D.I. Mendeleev A.M.Butlerov

DIVISION OF PETROLEUM CHEMISTRY AND ORGANIC CATALYSIS

HEAD OF THE CHAIR
Professor, Dr. Of Science, Karakhanov Eduard A.
119899, Moscow, Moscow State University, Department of chemistry,
tel (495) 939 -5377,  fax: (495) 932-8846
E-mail: kar@oil.chem.msu.ru

Date and place of birth: September 26, 1937 Tbilisi, USSR
Academic education: M.Sci., Department of Chemistry Moscow State University (1960); Ph.D. (Chemistry) (1963), Doctor of Science (Chemistry, 1977), Professor of Chemistry (1981) Moscow State University, .
Since 1983 up to date. Head of the chair of Petrochemistry and Organic catalysis, Department of Chemistry, Moscow State University.
Distinctions, Honors and Fellowships
M.V. Lomonosov Award, Moscow State University (2005)
N.D. Zelinsky Prize of Russian Academy of Sciences (2002)
Areas of research:
Prof. E.Karakhanov leads a large research group specialising in research in the field petrochemistry, biphasic and enviromentaly friendly  homogeneous catalysis, heterogeneous catalysis, immobilised metal complexes, green chemistry, supramolecular chemistry, design of hybrid materials.
Memberships
Vice-chairman of the Petrochemical Society of Russian Academy of Sciences
Member of Russian Academy of Natural Science
Miscellaneous
Co-editor, “Petroleum Chemistry” (Russ) Publisher: MAIC
Co-editor. “Bulletin of Moscow State University. Chemistry” Publisher: MAIC Moscow State University
Chairman  of 10th IUPAC International Symposium on Macromolecule-Metal Complexes (MMC-10, Moscow) 2003
Member of IUPAC International Advisory Board on Macromolecule-Metal Complexes (beginning  1996)
Member of  IUPAC International Advisory Board on Macro- and Supramolecular Architectures and Materials (MAM)

 

Publications: total number are more than 400, including

  1. Karakhanov, A. Maximov, P. Poloznicova, K. Suslov, Two-phase catalytic oxidation by Macromolecule-Metal complexes. Studies in Surface Science and Catalysis, V.121, Science and Technology in Catalysis 1998. P.127.
  2. E.A. Karakhanov, A.L. Maximov, V.V. Predeina, T.Yu. Filippova, A.Ya. Restakyan, Two phase Wacker oxidation of alkenes  catalyzed by  water-soluble macromolecular complexes of palladium. Macromol. Symp. 1998. V. 131.P. 87. 
  3. E.A. Karakhanov, A.L. Maximov, V.V. Predeina, T.Yu. Filippova, S.A. Martynova, I.N. Topchieva, New catalytic systems for selective oxidation of aromatic compounds by hydrogen peroxide Catal. Today 1998. V. 44. P.189.
  4. E.A.Karakhanov, Yu. S Kardasheva., E.A.Runova, S.V. Semernina Surface active rhodium catalysts for hydroformylation of higher alkenes in two-phase systems.  Journal of Molecular Catalysis A. Chemical.,  1999, V.141, P.339
  5. E.A. Karakhanov, Y.S. Kardasheva, A.V. Kirillov, A.L. Maximov, V.V. Predeina, E.A. Runova. Surface active macromolecular and supramolecular complexes: design and catalysis. Macromol. Symp. 2000 V. 156 P. 137 
  6. E.A. Karakhanov, A. Maximov, A. Kirillov, Octene oxidation Catalyzed by Palladium Complexes with Modified –cyclodextrins. J. Mol. Catal A: Chem. 2000, V.157. P. 25
  7. E.A. Karakhanov, A.L. Maximov, T.Yu. Filippova, Y.S. Kardasheva, T.S. Buchneva, M.A. Gayevskiy, A.Yu. Zhuchkova. Aqueous Catalysis by Novel Macromolecule Metal Complexes with Molecular Recognition Abilities. Polymer for Adv. Tech. 2001. V.12. P.161 
  8. E. Karakhanov,T. Buchneva, A. Maksimov, M.Zavertayeva. Substrate selectivity in byphasic Wacker-oxidation of alkenes in the presence of water-soluble calixarenes.  J. Mol. Cat. A: Chem. 2002. V. 184. P. 11
  9. E.Karakhanov, A.Maximov.  Catalysis by Soluble Macromolecule Metal Complexes. In : Metal Complexes and Metals in Macromolecules. Ed. D. Wohrle and A.Pomogajlo. Wiley-VCH. 2003 P.457
  10. E.A. Karakhanov, T. S. Buchneva, A. L. Maksimov, and E. A. Runova. Calixarene-Based Catalyst Systems in Biphasic Wacker Oxidation of Olefins. Petroleum Chemistry, Vol. 43, No. 1, 2003, pp. 38–45. Translated from Neftekhimiya, Vol. 43, No. 1, 2003, pp. 42–48
  11.  E.A. Karakhanov, A. Ya. Zhuchkova, T. Yu. Filippova, and A. L. Maksimov. Supramolecular Cyclodextrin-Based Catalyst Systems in Wacker Oxidation. Petroleum Chemistry, Vol. 43, No. 4, 2003, pp. 273–277. Translated from Neftekhimiya, Vol. 43, No. 4, 2003, pp. 302–307.
  12. A.L.Maksimov, T. S. Buchneva, and E. A. Karakhanov, Oxidation of Olefins to Ketones Catalyzed by a Water-Soluble Palladium Complex with Calix[4]arene Modified with Benzonitrile GroupsÞ Petroleum Chemistry, Vol. 43, No. 3, 2003, pp. 154–158. Translated from Neftekhimiya, Vol. 43, No. 3, 2003, pp. 173–178.
  13. E.A. Karakhanov, A.L. Maximov, E.A. Runova, Y.S. Kardasheva, M.V. Terenina, T.S. Buchneva, A.Ya.Zhuchkova. Supramolecular Catalytic Systems Based on Calixarenes and Cyclodextrins. Macromol. Symp. 2003. V.204. P.159
  14. S. V. Baranova, T. N. Zangelov, E. A. Karakhanov, S. V. Lysenko, and M. R. Pogosyan. Nickel Passivation on Zeolite-Containing Deep-Cracking Catalysts //Petroleum Chemistry, 2003 V.43, No5, p. 320-323
  15. A.L. Maksimov, T.S. Buchneva, E.A. Karakhanov Supramolecular Calixarene-Based Catalytic Systems in the Wacker-Oxidation of higher alkenes. J. Mol. Catal. A. 2004. V.217. N 1-2. P.59
  16. S.V. Egazar’yants, E. A. Karakhanov, S. V. Kardashev, A. L. Maksimov, and S. S. Minos’yants. Carbon Dioxide Hydrogenation on Macromolecular Rhodium and Ruthenium Complexes. Petroleum Chemistry, Vol. 44, No. 1, 2004, pp. 13–23. Translated from Neftekhimiya, Vol. 44, No. 1, 2004, pp. 16–26
  17. A.L. Maksimov, E. A. Ivanova, and E. A. Karakhanov, Oxidation of Alkylaromatic Hydrocarbons with Hydrogen Peroxide in Biphasic Systems. Petroleum Chemistry, Vol. 44, No. 6, 2004, pp. 432–437. Translated from Neftekhimiya, Vol. 44, No. 6, 2004, pp. 466–471
  18. Anton L. Maksimov, Dimitri A. Sakharov, Tatyana Yu. Filippova, Anna Ya. Zhuchkova, and Edward A. Karakhanov. Supramolecular Catalysts on the Basis of Molecules-Receptors. Industrial & Engineering Chemistry Research. 2005. V.44. N23. P.8644
  19. E A Karakhanov, A L Maksimov, E A Runova. Design of supramolecular metal complex catalytic systems for organic and petrochemical synthesis. Russian Chemical Reviews. 2005 V.74 N1 P. 97-111
  20. E. A. Karakhanov, A. L. Maksimov, A. Ya. Zhuchkova, T. Yu. Filippova, and L. M. Karapetyan Molecular Imprinting as a Method for the Creation of Cyclodextrin-Based Supramolecular Catalysts Used in the Wacker Oxidation of Unsaturated Compounds Petroleum Chemistry, Vol. 45, No. 2, 2005, pp. 79–86. Translated from Neftekhimiya, Vol. 45, No. 2, 2005, pp. 97–104.
  21. 1. S. V. Lysenko, S. V. Baranova, T. N. Zangelov, N. F. Kovaleva, A. V. Sungurov, and E. A. Karakhanov  Synthesis and Properties of Supports for Heterogeneous Catalysts Based on Mesoporous Zirconium Dioxide  //Petroleum Chemistry, 2005. V.45, No4, p. 264-267
  22. 2. S. V. Lysenko, S. V. Baranova, A. V. Sungurov, N. F. Kovaleva, and E. A. Karakhanov. n-Butane Isomerization on Bifunctional Catalysts Based on Tungstate-Modified Mesoporous Zirconia //Petroleum Chemistry, 2005. V.45, No5, p. 305-308.
  23. E.A. Karakhanov, L.M .Karapetyan, Yu.S. Kardasheva, A.L. Maksimov, E.A. Runova, V.A. Skorkin, M.V. Terenina. Molecular Recognition and Catalysis: from Macrocyclic Receptors to Molecularly Imprinted Metal Complexes. In Recent Advances and Novel Approaches in Macromolecule-Metal Complexes. Ed. R.Barbucci, F.Ciardelli, G.Ruggeri. Macromolecular Symposia. 2006 V.235 P.39
  24. 3. Ivanov A.V., Lysenko S.V., Baranova S.V., Sungurov A.V., Zangelov T.N., Karakhanov E.A. Thermally stable materials based on mesostructured sulfated zirconia //Microporous and mesoporous materials. 2006. V.91. p.254-260.

Laboratory of Petrochemical Synthesis

Head of the Laboratory: professor E.A.Karakhanov
     Research activities within the group cover a broad range of petrochemistry, smart trasition metal complex catalysis, heterogeneous catalysis and can be divided into several categories:

HETEROGENEOS CATALYSIS FOR PETROCHEMICAL SYNTHESIS  (key persons prof.E.Karakhanov, prof. S.Lysenko)
Major research areas
Deep catalitic cracking of vacuum gas oil and reidual oil
The use of a mixture of vacuum gas oil with residual as catalytic cracking feedstock enable the degree of processing crude oil to be increased considerably. The main problem arises of poisoning of the zeolite-containing catalysis. This problem is solved by using passivators. Our aim consist in the synthesis of new passivators for catalytic cracking and deep catalytic cracking.
References
1.S.V. Baranova, T. N. Zangelov, E. A. Karakhanov, S. V. Lysenko, and M. R. Pogosyan. Nickel Passivation on Zeolite-Containing Deep-Cracking Catalysts //Petroleum Chemistry, 2003 V.43, No5, p. 320-323
2.  E. A. Karakhanov, S. V. Baranova, and S. V. Lysenko Passivation of Heavy Metals on Cracking Catalysts // Petroleum Chemistry, 1999. V.39, No5, p. 319-335

Catalysts based on mesoporous materials
We are intersted in the development of new catalyst for petrochemistry using mesoporous metal oxides. The objective is to synthesize and thoroughly characterize such materials and to test them for stability and catalytic performance in a number of reaction: hydroisomerization of butane, pentane-hexane and diessel oil, heavy fuel oil, alkylation and hydrocracking of vacuum gas oil. 
Reference
1. S. V. Lysenko, S. V. Baranova, T. N. Zangelov, N. F. Kovaleva, A. V. Sungurov, and E. A. Karakhanov  Synthesis and Properties of Supports for Heterogeneous Catalysts Based on Mesoporous Zirconium Dioxide  //Petroleum Chemistry, 2005. V.45, No4, p. 264-267
2. S. V. Lysenko, S. V. Baranova, A. V. Sungurov, N. F. Kovaleva, and E. A. Karakhanov. n-Butane Isomerization on Bifunctional Catalysts Based on Tungstate-Modified Mesoporous Zirconia //Petroleum Chemistry, 2005. V.45, No5, p. 305-308.
3. Ivanov A.V., Lysenko S.V., Baranova S.V., Sungurov A.V., Zangelov T.N., Karakhanov E.A. Thermally stable materials based on mesostructured sulfated zirconia //Microporous and mesoporous materials. 2006. V.91. p.254-260.

HOMOGENEOUS CATALYSIS FOR PETROCHEMICAL and FINE CHEMICAL SYNTHESYS(key persons prof. E.Karakhanov, Ass.Prof. E.Runova, Senior Ass. A.Maksimov)
Over the last decade, homogeneous catalysis with transition metal complexes has led to revolutionary new synthetic possibilities not only on a laboratory scale, but has also established itself in many different technical applications. Efficient homogeneous catalysts are nowadays known in virtually all areas of synthesis, from bulk chemicals and commodities, through fine chemicals and pharmaceuticals, to polymers and specialist materials  The focus of our investigation is on concepts of self-assembly, non-covalent interactions, host-guest chemistry, and structural templates.
     Major research areas
Design of supramolecular metal complex catalysts with molecular recognition abilities
Our long-term goal is the development of methods for the design of selective catalyst for oxydation, hydrogenation hydroformylation, carbonylation, epoxidation using host molecules – cyclodextrins and calixarenes. Modified water-soluble macrocyclic receptors can form complexes of inclusion "host-guest" with nonpolar substrates due to a hydrophobicity of internal cavity. The reaction of these catalysts is based on the substrate binding to both the metal site and the receptor cavity, which can influence the selectivity and the pathway of the reaction. The metal ion coordinated to a ligand group bound to cyclodextrin or to calixarene can enhance the stability of the emerging inclusion complexes by the metal ion coordination with substrate. It can also stabilize the transition state, and ensure a high selectivity of the reaction owing to a specific orientation of a substrate. Moreover, as a consequence of the formation of the host–guest complexes, some parts of the molecule are accessible to be attacked by active species, whereas the other are blocked, which can change the selectivity of the reaction.


oil

oil1

oil2

b-cyclodextrine

Calix[6]arene

PPI dendrimer

 

References
1. E A Karakhanov, A L Maksimov, E A Runova. Design of supramolecular metal complex catalytic systems for organic and petrochemical synthesis. Russian Chemical Reviews. 2005 V.74 N1 P. 97-111
2. E.Karakhanov, A. Maximov, P. Poloznicova, K. Suslov, Two-phase catalytic oxidation by Macromolecule-Metal complexes. Studies in Surface Science and Catalysis, V.121, Science and Technology in Catalysis 1998. P.127.
3. E.A. Karakhanov, A.L. Maximov, V.V. Predeina, T.Yu. Filippova, S.A. Martynova, I.N. Topchieva, New catalytic systems for selective oxidation of aromatic compounds by hydrogen peroxide Catal. Today 1998. V. 44. P.189.
4. E.A. Karakhanov, A. Maximov, A. Kirillov, Octene oxidation Catalyzed by Palladium Complexes with Modified –cyclodextrins. J. Mol. Catal A: Chem. 2000, V.157. P. 25
5. E.A. Karakhanov, A.L. Maximov, T.Yu. Filippova, Y.S. Kardasheva, T.S. Buchneva, M.A. Gayevskiy, A.Yu. Zhuchkova. Aqueous Catalysis by Novel Macromolecule Metal Complexes with Molecular Recognition Abilities. Polymer for Adv. Tech. 2001. V.12. P.161
6. E. Karakhanov,T. Buchneva, A. Maksimov, M.Zavertayeva. Substrate selectivity in byphasic Wacker-oxidation of alkenes in the presence of water-soluble calixarenes.  J. Mol. Cat. A: Chem. 2002. V. 184. P. 11
7. E.A. Karakhanov, T. S. Buchneva, A. L. Maksimov, and E. A. Runova. Calixarene-Based Catalyst Systems in Biphasic Wacker Oxidation of Olefins. Petroleum Chemistry, Vol. 43, No. 1, 2003, pp. 38–45. Translated from Neftekhimiya, Vol. 43, No. 1, 2003, pp. 42–48
8. E.A. Karakhanov, A. Ya. Zhuchkova, T. Yu. Filippova, and A. L. Maksimov. Supramolecular Cyclodextrin-Based Catalyst Systems in Wacker Oxidation. Petroleum Chemistry, Vol. 43, No. 4, 2003, pp. 273–277. Translated from Neftekhimiya, Vol. 43, No. 4, 2003, pp. 302–307.
9. A.L.Maksimov, T. S. Buchneva, and E. A. Karakhanov, Oxidation of Olefins to Ketones Catalyzed by a Water-Soluble Palladium Complex with Calix[4]arene Modified with Benzonitrile GroupsÞ Petroleum Chemistry, Vol. 43, No. 3, 2003, pp. 154–158. Translated from Neftekhimiya, Vol. 43, No. 3, 2003, pp. 173–178.
10. E.A. Karakhanov, A.L. Maximov, E.A. Runova, Y.S. Kardasheva, M.V. Terenina, T.S. Buchneva, A.Ya.Zhuchkova. Supramolecular Catalytic Systems Based on Calixarenes and Cyclodextrins. Macromol. Symp. 2003. V.204. P.159
11. A.L. Maksimov, T.S. Buchneva, E.A. Karakhanov Supramolecular Calixarene-Based Catalytic Systems in the Wacker-Oxidation of higher alkenes. J. Mol. Catal. A. 2004. V.217. N 1-2. P.59
12. Maksimov Anton L., Sakharov Dimitri A., Filippova Tatyana Yu., Zhuchkova Anna Ya., Karakhanov Edward A..  Industrial & Engineering Chemistry Research. 2005. V.44. N23 P.8644
Also we used molecular imprinting aproach for design of selective catalyst based on cyclodextrins for Wacker-oxidation of unsaturated compounds.
Reference
1. E. A. Karakhanov, A. L. Maksimov, A. Ya. Zhuchkova, T. Yu. Filippova, and L. M. Karapetyan Molecular Imprinting as a Method for the Creation of Cyclodextrin-Based Supramolecular Catalysts Used in the Wacker Oxidation of Unsaturated Compounds Petroleum Chemistry, Vol. 45, No. 2, 2005, pp. 79–86. Translated from Neftekhimiya, Vol. 45, No. 2, 2005, pp. 97–104.
2. E.A. Karakhanov, L.M .Karapetyan, Yu.S. Kardasheva, A.L. Maksimov, E.A. Runova, V.A. Skorkin, M.V. Terenina. Molecular Recognition and Catalysis: from Macrocyclic Receptors to Molecularly Imprinted Metal Complexes. In Recent Advances and Novel Approaches in Macromolecule-Metal Complexes. Ed. R.Barbucci, F.Ciardelli, G.Ruggeri. Macromolecular Symposia. 2006 V.235 P.39
Multi-phase catalysis in water or  ionic liquid
This line of research is devoted to the use of biphasic liquid/liquid mixture for catalysis separation from products and for catalysis recovery. These systems contain two phases and catalyst recycling can be achieved via phase separation and re-use of the catalyst-containing phase. One of the promising trends in creating recyclable catalysts is the  use of supramolecular stuctures based on cyclodextrines, calixarenes, various polymers etc. We design catalysts that combine properties of metal complexes and a surface active substance with the ability of molecular recognition in water or ionic liquids.
Reference

  • E.A. Karakhanov, Y.S. Kardasheva, A.V. Kirillov, A.L. Maximov, V.V. Predeina, E.A. Runova. Surface active macromolecular and supramolecular complexes: design and catalysis. Macromol. Symp. 2000 V. 156 P. 137 
  •  Karakhanov E., Maximov A.  Catalysis by Soluble Macromolecule Metal Complexes. In : Metal Complexes and Metals in Macromolecules. Ed. D. Wohrle and A.Pomogajlo. Wiley-VCH. 2003 P.457
  •  Maksimov Anton L., Sakharov Dimitri A., Filippova Tatyana Yu., Zhuchkova Anna Ya., Karakhanov Edward A..  Industrial & Engineering Chemistry Research. 2005. V.44. N23 P.8644

Immobilization  of metal complex catalyst
Our research interests here are focussed on immobilization of metal complexes on soluble polymer support and dendrimers. The research activities pursued are aimed at improving the use of environmentally compatible raw materials by catalytic syntheses and increasing their economic efficiency. The immobilization of catalysts and implementation of new concepts of multi-phase catalysis shall allow for the best possible use of catalysts. Based on fundamental research results and the developments of applied research, applications shall be opened up in industrially relevant synthesis processes.
Reference
1. Karakhanov E.A.,  Runova E.A., Berezkin G.V., Neimerovets E.B.. Macromolecular Simposia. 1994. V.8. N3. P.231.
2. Karakhanov E.A., Kardasheva U.S., Maksimov A.L., Predeina V.V. Runova E.A., Utukin A.M.  J. Mol. Catal. A:Chem.. 1996. V.107. P.235
3. E.A. Karakhanov, A.L. Maximov, V.V. Predeina, T.Yu. Filippova, A.Ya. Restakyan, Two phase Wacker oxidation of alkenes  catalyzed by  water-soluble macromolecular complexes of palladium. Macromol. Symp. 1998. V. 131.P. 87.
4.  Karakhanov E.A., Kardasheva Yu. S., Runova E.A., Semernina V.A. J. Mol. Catal. A:Chem.  1999 V.141. P.339
5. Karakhanov E.A., Maximov A.L., Filippova T.Yu., Kardasheva Y.S., Buchneva T.S., Gayevskiy M.A., Zhuchkova A.Yu., Polymer for Adv. Tech. 2001 V.12. P.161
6. Karakhanov E.A., Karapetyan L.M., Kardasheva Yu.S, Maksimov A.L., Runova E.A., Skorkin V.A., Terenina M.V.. In.:Recent Advances and Novel Approaches in Macromolecule-Metal Complexes. Ed. R.Barbucci, xF.Ciardelli, G.Ruggeri. Macromolecular Symposia. 2006 V.235 P.39

 

Carbon Dioxide as C1-Building Block
The objective consists in combining synthesis potential of carbon dioxide with reactive intermediate products of petrochemical origin and to make this combination potentially usable in industry. In the sense of a “green chemistry”, for instance, it is aimed at substituting the extremely toxic phosgene by carbon dioxide as reactive C1 synthesis building block. We have succeeded in design of new homogenious catalytic system based on polyethylenoxide Rh and Ru complexes for hydrogenation of CO2 to formic acid. Catalysts were microencapsulated in hybrid material based on polyethyleneoxide and were used repeatedly without activity decrease.

References
1. S.V. Egazar’yants, E. A. Karakhanov, S. V. Kardashev, A. L. Maksimov, and S. S. Minos’yants,Sedih A.D.  Hydogenation of CO2 in water solution of polyethylenoxide.   Petroleum Chemistry, Vol. 41, No. 4, 2001. P. 268-271 (Translated from Neftekhimiya, 2001 Vol.41. - No4. P. 293-297)
2. S.V. Egazar’yants, E. A. Karakhanov, S. V. Kardashev, A. L. Maksimov, and S. S. Minos’yants,  Hydrogenation of CO2 on the Ru macrocomplexes under mild conditions. Petroleum Chemistry, Vol. 42, No. 6, 2002, P.414-417  (Translated from Neftekhimiya, 2002. Vol. 42. No6.P.463-466).
3. S.V. Egazar’yants, E. A. Karakhanov, S. V. Kardashev, A. L. Maksimov, and S. S. Minos’yants.Carbon Dioxide Hydrogenation on Macromolecular Rhodium and Ruthenium Complexes. Petroleum Chemistry, Vol. 44, No. 1, 2004, pp. 13–23. (Translated from Neftekhimiya, Vol. 44, No. 1, 2004, pp. 16–26)


The site is supported by Russian Foundation for Basic Research
  The using of published on this page materials is not allowed without special permission
Copyright (C) Chemisty Department of Moscow State University
Web-Editor: B.I.Pokrovskii
Web-design: Copyright (C) I. Minyaylova and V. Minaylov
webmaster@www.chem.msu.su

ChemNet-Russia
Up to Moscow State University Up to Chemistry Department