ChemNet
 
Õèìè÷åñêèé ôàêóëüòåò ÌÃÓ

Êíèãè ñîòðóäíèêîâ ôàêóëüòåòà

Gleb B. Sergeev, Kenneth J. Klabunde.  Nanochemistry. 2nd edition

Gleb B. Sergeev, Kenneth J. Klabunde

Nanochemistry

second edition

(c) Elsevier, 2013
ISBN 978-0-444-59397-9

Ñ êíèãîé ìîæíî îçíàêîìèòüñÿ â áèáëèîòåêå
Õèìè÷åñêîãî ôàêóëüòåòà ÌÃÓ


Nanochemistry, 2nd Edition, reviews the synthesis, characterization, properties and applications of nanoparticles and clusters. It presents the background and latest research by leading international scientists.

Nanochemistry is an important branch of the actively developing interdisciplinary field of nanoscience, which studies the background, production processes and reactions of nanoparticles. Such particles have high activity and can undergo new and unusual chemical transformations.

This book presents the theory and synthetic techniques and then progresses to examine key applications of nanoparticles including photocatalysts and medicine

KEY FEATURES:

  • Leads the reader through the theory, research and key applications of nanochemistry providing a thorough reference for researchers in this important growing area
  • 40% more content than the first edition and an expanded author team provide a more comprehensive coverage
  • Reviews important new advances in the field including organic nanoparticles and key methods for making nanoparticles e.g. Solvated Metal Atom Dispersion and self assembly techniques


The book is intended for graduate and postgraduate students, scientific researchers in chemistry, physics and biology. Combining the elements of both a review and text book it provides readers with information on current and prospective directions in nanochemistry.

Professor Gleb B. Sergeev has headed up a laboratory of low temperature Chemistry at the Chemistry Department of Moscow State University, has 380 publications and 3 monographs. He has guided 41 dissertation postgraduate students.

Professor Kenneth J. Klabunde teaches at Kansas State University, has 510 publications, and has mentored 47 Ph.D., 31 masters, 60 postdoctoral, and 33 undergraduate researchers over a 42-year period. He is the founder of one of the first (1995) nanotechnology companies, NanoScale Corporation.


Contents

Preface

xi

1. Survey of the Problem and Certain Definitions

1

2. Synthesis and Stabilization of Nanoparticles

11

2.1    Chemical Reduction

13

2.2    Reactions in Micelles, Emulsions, and Dendrimers

18

2.3    Photochemical and Radiation-Chemical Reductions

22

2.4    Cryochemical Synthesis

27

2.5    Physical Methods

38

2.6    Particles of Various Shapes and Films

43

3.  Solvated Metal Atom Dispersion (SMAD) for Making Metal Nanoparticles

55

3.1     Experimental Techniques

55

3.2    Aggregation of Metal Atoms or Reactive Molecules in Low-Temperature Matrices/Solvents

56

3.2.1    Control of the Gold-Tin (Au-Sn) Bimetallic System

57

3.2.1.1    Experimental Results on Au Atom-Sn Atom Clusters in Cold Solvents

58

3.2.2    Reactivity of Aggregates (Nanoparticles or Nanocrystals)

61

3.2.3   Trapping and Stabilization

61

3.3     Examples of Useful Synthesis

61

3.3.1    Gold Nanoparticles

61

3.3.2    Silver and Copper

63

3.3.3   Other Metals

63

3.3.4   Binuclear Compounds

63

3.4    Digestive Ripening or "Nanomachining"

64

3.5    Rods, Wires, and Stars

69

4.     Experimental Techniques

75

4.1     Electron Microscopy

76

4.1.1    Transmission Electron Microscopy

77

4.1.2   Scanning Electron Microscopy

77

4.2    Probe Microscopy

78

4.3    Diffraction Techniques

81

4.3.1    X-ray Diffraction

81

4.3.2    Neutron Diffraction

82

4.4    Miscellaneous Techniques

82

4.4.1    EXAFS

82

4.4.2   X-ray Fluorescence Spectroscopy

82

4.4.3   Mass Spectrometry

83

4.4.4   Photoelectron Spectroscopy

83

4.4.5   Nuclear Magnetic Resonance (NMR) Spectroscopy

83

4.4.6   Ultra Violet-Visible Spectrometry (200-800 nm)

84

4.4.7    Dynamic Light Scattering

84

4.5    Comparison of Spectral Techniques Used for Elemental Analysis

85

5.     Cryochemistry of Metal Atoms and Nanoparticles

89

5.1     Reactions of Magnesium Particles

90

5.1.1    Grignard Reactions

90

5.1.2   Activation of Small Molecules

93

5.1.3    Explosive Reactions

96

5.2    Silver and Other Metals

100

5.2.1    Stabilization by Polymers

101

5.2.2   Stabilization by Mesogenes

110

5.3    Reactions of Rare-earth Elements

115

5.4    Activity, Selectivity, and Size Effects

122

5.4.1    Reactions at Superlow Temperatures

122

5.4.2    Reactions of Silver Particles of Various Sizes and Shapes

132

5.5    Theoretical Methods

137

5.5.1    General Remarks

137

5.5.2   Simulation of the Structure of Mixed Metallic Particles

138

5.5.3   Simulation of Properties of Intercalation Compounds

143

5.5.4   Simulation of Structural Elements of Organometallic Co-condensates

145

6.     Chemical Nanoreactors

155

6.1     General Remarks

155

6.2    Alkali and Alkaline-Earth Elements

160

6.3    Transition Metals of Groups III-VII in the Periodic Table

169

6.4    Elements of the Group VIII of the Periodic System

179

6.5    Subgroups of Copper and Zinc

191

6.6    Subgroup of Boron and Arsenic

198

7.     Assemblies Involving Nanoparticles

209

7.1    Assemblies Involving Nanoparticles

209

7.2    Forces between Nanoparticles

215

7.2.1    Attraction Forces

215

7.2.2   Theory of NP Interaction Potentials

215

7.2.3   Nanocrystal Superlattices

216

8.     Group of Carbon

221

8.1     Fine Particles of Carbon and Silicon

221

8.2    Fullerenes

223

8.3    Carbon Nanotubes

225

8.3.1    Filling of Tubes

226

8.3.2   Grafting of Functional Groups. Tubes as Matrices

227

8.3.3    Intercalation of Atoms and Molecules into Multiwalled Tubes

229

8.4    Graphene

230

8.5    Carbon Aerosol Gels/Turbstratic Graphite/Graphene

231

9.     Organic Nanoparticles

235

9.1     Introduction

235

9.2    Methods for the Preparation of Nanoparticles

237

9.2.1    Physical Methods

237

9.2.1.1    Mechanical Grinding of the Original Substance

237

9.2.1.2    Laser Ablation

239

9.2.2   Chemical Methods

242

9.2.2.1    Solvent Replacement

242

9.2.2.2    Antisolvents for Precipitation

244

9.2.2.3    Chemical Reduction in Solution

245

9.2.2.4    Ion Association

246

9.2.2.5    Synthesis of Nanoparticles in Water-Oil Emulsion

247

9.2.2.6    Photochemical Method

248

9.2.2.7   The use of Supercritical Fluids

248

9.2.2.8   Cryochemical Synthesis and Modification of Nanoparticles

251

9.3    Properties and Application of Organic Nanoparticles

257

9.3.1    Spectral Properties

257

9.3.2   Quasi-one-dimensional Systems

260

9.3.3   Drugs and Nanoparticles

263

9.4    Conclusion

269

10.   Size Effects in Nanochemistry

275

10.1   Models of Reactions of Metal Atoms in Matrices

276

10.2  Melting Point

278

10.3  Optical Spectra

281

10.4  Kinetic Peculiarities of Chemical Processes on the Surface of Nanoparticles

287

10.5 Thermodynamic Features of Nanoparticles

289

10.6 Magnetic Properties

293

10.7  Electrical/conducting Properties

294

11.   Nanoparticles in Science and Technology

299

11.1   Catalysis on Nanoparticles

299

11.2 Oxide Reactions

311

11.3  Semiconductors, Sensors, and Electronic Devices

314

11.4   Photochemistry and Nanophotonics

323

11.5  Applications of CNTs

326

11.6  Nanochemistry in Biology and Medicine

329

11.6.1 DNA-modified Nanoparticles

336

Conclusion

347

Index

355



Ñåðâåð ñîçäàåòñÿ ïðè ïîääåðæêå Ðîññèéñêîãî ôîíäà ôóíäàìåíòàëüíûõ èññëåäîâàíèé
Íå ðàçðåøàåòñÿ  êîïèðîâàíèå ìàòåðèàëîâ è ðàçìåùåíèå íà äðóãèõ Web-ñàéòàõ
Âåáäèçàéí: Copyright (C) È. Ìèíÿéëîâà è Â. Ìèíÿéëîâ
Copyright (C) Õèìè÷åñêèé ôàêóëüòåò ÌÃÓ
Íàïèñàòü ïèñüìî ðåäàêòîðó