Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В. Ломоносова» Химический факультет

УТВЕРЖДАЮ

Декан химического факультета, Акад. РАН, профессор

/В.В. Лунин/

Blue

«27» февраля 2017 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Современные экспериментальные методы химической кинетики

Уровень высшего образования:

Специалитет

Направление подготовки (специальность):

04.05.01 Фундаментальная и прикладная химия

Направленность (профиль) ОПОП:

Химическая кинетика

Форма обучения:

очная

Рабочая программа рассмотрена и одобрена Учебно-методической комиссией факультета (протокол №1 от 27.01.2017) Рабочая программа дисциплины разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки / специальности 04.05.01 «Фундаментальная и прикладная химия» (программа специалитета), утвержденного приказом МГУ от 22 июля 2011 года № 729 (в редакции приказов МГУ от 22 ноября 2011 года № 1066, от 21 декабря 2011 года № 1228, от 30 декабря 2011 года № 1289, от 27 апреля 2012 года № 303, от 30 декабря 2016 года № 1671).

Год (годы) приема на обучение 2014/2015, 2015/2016, 2016/2017, 2017/2018, 2018/2019, 1019/2020

- 1. Наименование дисциплины (модуля) Современные экспериментальные методы химической кинетики
- 2. Уровень высшего образования специалитет.
- 3. Направление подготовки: 04.05.01 Фундаментальная и прикладная химия.
- 4. Место дисциплины (модуля) в структуре ООП: вариативная часть ООП, блок ПД.
- 5. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Компетенция	Планируемые результаты обучения по дисциплине (модулю)				
ОПК-1.С. Способность решать современные проблемы	Знать: актуальные направления экспериментальных исследований в				
фундаментальной и прикладной химии, используя	области химической кинетики				
методологию научного подхода и систему фундаментальных					
химических понятий и законов					
СПК-1.С. Способность анализировать экспериментальные	Знать: применения микроскопии высокого разрешения и других				
кинетические данные, строить кинетические схемы и	современных экспериментальных методов для исследования кинетики и				
определять константы скорости и равновесия для различных	механизма химических реакций.				
реакций	Уметь: решать связанные с экспериментальным исследованием				
	кинетики и механизма физико-химических процессов практические				
	задачи				
СПК-2.С. Способность выбирать теоретические модели для	Знать: возможности и ограничения языка Python для автоматизации				
описания конкретного химического процесса с	обработки массивов экспериментальных данных.				
использованием аппарата современных теорий	Владеть: навыками использования основных средств языка Python для				
	автоматизации обработки, хранения и визуализации				
	экспериментальных данных, навыками использования программных				
	средств и справочных ресурсов сети интернета.				

6. Объем дисциплины в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся:

Объем дисциплины (модуля) составляет 2 зачетных единицы, всего 72 часа, из которых 50 часов составляет контактная работа студента с преподавателем (12 часов занятия лекционного типа, 12 часов занятия семинарского типа, 12 часов – групповые консультации, 10 часов – индивидуальные консультации, 4 часа – промежуточный контроль успеваемости), 22 часа составляет самостоятельная работа студента.

7. Входные требования для освоения дисциплины (модуля), предварительные условия. Обучающийся должен

Знать: основные законы физики, основы спектроскопии и строения молекул, основы химической кинетики;

Уметь: находить и использовать литературные данные по методам исследования строения и реакционной способности вещесв и материалов;

Владеть: основами химической кинетики.

8. Содержание дисциплины (модуля), структурированное по темам.

Наименование и краткое	Bcero	В том числе								
содержание разделов и тем дисциплины (модуля), форма промежуточной аттестации по дисциплине	(часы)	Контактная работа (работа во взаимодействии с преподавателем), часы из них						Самостоятельная работа обучающегося, часы из них		
(модулю)		Занятия лекционного типа	Занятия семинарского типа	Групповые консультации	Индивидуальные консультации	Учебные занятия, направленные на проведение текущего контроля успеваемости, промежуточно й аттестации	Bcero	Выполнение домашних заданий	Подготовка рефератовит.п	Всего
Тема 1. Сканирующая электронная микроскопия: современное состояние, приборное обеспечение, применение к исследованию механизмов физико-химических процессов	8	2	2	2			6	2		2
Тема 2. Просвечивающая электронная микроскопия.	10	2	2	2	2		8	2		2

Тема 3. Современные методы исследования поверхности, размера пор, адсорбционных свойств.	12	4	2	2	2	0	10	2	2
Тема 4. Рентгеновская фотоэлектронная спектроскопия в применении к исследованию механизмов физико-химических процессов	12	4	2	2	2		10	2	2
Тема 5. Обработка экспериментальных данных с использованием языка Python	10		4	2	2		8	2	2
Промежуточная аттестация: <u>зачёт</u>	20			2	2	4	8	12	12
Итого	72	12	12	12	10	4	50	22	22

9. Образовательные технологии:

- -применение компьютерных симуляторов, обработка данных на компьютерах, использование компьютерных программ, управляющих приборами;
- -преподавание дисциплин в форме авторских курсов по программам, составленным на основе результатов исследований научных школ МГУ и других научных организаций.

10. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю): презентации к лекционным занятиям.

11. Ресурсное обеспечение:

• Перечень основной и вспомогательной учебной литературы ко всему курсу

Основная литература

- 1. Практикум по физической химии. Физические методы исследования Учебное пособие. Под ред. М.Я.Мельникова, Е.П.Агеева, В.В.Лунина. М.: Академия, 2015.
- Материально-техническое обеспечение: лекционные занятия проводятся в обычной аудитории, оснащенной доской и мелом (маркерами), практические в компьютерной лаборатории
- 12. Язык преподавания русский
- 13. Преподаватели: проф., д.х.н. Мельников Михаил Яковлевич н.с., к. х. н. Громов Олег Игоревич

Фонды оценочных средств, необходимые для оценки результатов обучения

Образцы оценочных средств для текущего контроля усвоения материала и промежуточной аттестации - зачета. На зачете проверяется достижение промежуточных индикаторов компетенций, перечисленных в п.5.

Вопросы к зачету

- 1. Сканирующая электронная микроскопия
 - 1) Какие параметры регистрации влияют на качество получаемых микрофотографий? Как подобрать оптимальные параметры?
 - 2) Сравните формирование контраста на микрофотографиях, полученных во вторичных и обратно отражённых электронах. В каких случаях предпочтителен каждый из двух методов регистрации?
 - 3) Как с помощью сканирующей электронной микроскопии исследуют внутреннюю структуру образца (какая пробоподготовка необходима)?
 - 4) Какую информацию можно получить с помощью рентгеноспектрального микроанализа в электронной микроскопии? Какова её точность? В чём различие энергодисперсионной (EDX) и волнодисперсионной (WDX) вариаций РСМА?
- 2. Просвечивающая электронная микроскопия
 - 1) Чем отличается устройство сканирующего и просвечивающего электронного микроскопов? Почему просвечивающий электронный микроскоп имеет более сложное устройство и требует бОльших ускоряющих напряжений?
 - 2) Каков принцип формирования контраста в просвечивающей электронной микроскопии? В каких случаях необходимо искусственно создавать контраст (например, с помощью соединений вольфрама или урана)?
 - 3) Какие ограничения на размеры/толщину образца предъявляются в просвечивающей электронной микроскопии? Приведите примеры объектов, которые возможно и невозможно исследовать методом ПЭМ.
- 3. Рентгеновская фотоэлектронная микроскопия

- 1) С чем связано появление дублетных линий на спектрах РФЭС р, d и f уровней?
- 2) Объясните природу возникновения спектров, содержащих ярко выраженные плазмонные потери после линии Al2p для нормального и скользящего угла сбора фотоэлектронов.
- 3) Чем объясняется появление сателлитов встряски на спектре Cu2p в различных химических состояниях меди?

4. Адсорбция газов

- 1) Опишите шесть основных видов изотерм адсорбции. Для каких систем характерен каждый вид (макро-, мезо-, микропористые; приведите примеры).
- 2) Различаются ли изотермы, зарегистрированные в режиме адсорбции и десорбции газа (т.е. при постепенном увеличении и уменьшении давления)? О чём может говорить наличие гистерезиса на изотермах адсорбции/десорбции? Какой из вариантов регистрации используется на практике чаще и почему?
- 3) Всегда ли применима модель Брунауэра-Эммета-Теллера? Какие ещё теоретические модели/уравнения, кроме модели БЭТ, используются для описания изотерм? Для каких систем они применимы и какую информацию позволяют получать?
- 5. Обработка экспериментальных данных с использованием языка Python.
 - 1) Напишите программу на языке Python, строящую зависимость интенсивности спектра ЭПР нитроксильного радикала от корня из микроволновой мощности (кривую насыщения) на основании имеющихся файлов с серией спектров ЭПР в формате BES3T (Bruker), зарегистрированных при разных значениях мощности.

Методические материалы для проведения процедур оценивания результатов обучения

Шкала оценивания знаний, умений и навыков является единой для всех дисциплин (приведена в таблице ниже)

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю)								
Оценка	2	3	4	5				
Результат								
Знания	Отсутствие	Фрагментарные знания	Общие, но не структурированные	Сформированные				
	знаний		знания	систематические знания				
Умения	Отсутствие	В целом успешное, но не	В целом успешное, но содержащее	Успешное и систематическое				
	умений	систематическое умение	отдельные пробелы умение	умение				
			(допускает неточности					
			непринципиального характера)					
Навыки	Отсутствие	Наличие отдельных	В целом, сформированные навыки,	Сформированные навыки,				
(владения)	навыков	навыков	но не в активной форме	применяемые при решении задач				

РЕЗУЛЬТАТ ОБУЧЕНИЯ	ФОРМА ОЦЕНИВАНИЯ		
по дисциплине (модулю)			
Знать: актуальные направления экспериментальных исследований в области химической	мероприятия текущего контроля		
кинетики.	успеваемости, устный опрос на зачете		
Знать: применения микроскопии высокого разрешения и других современных			
экспериментальных методов для исследования кинетики и механизма химических реакций.			
Знать : возможности и ограничения языка Python для автоматизации обработки массивов			
экспериментальных данных.			
Уметь: решать связанные с экспериментальным исследованием кинетики и механизма физико-	мероприятия текущего контроля		
химических процессов практические задачи	успеваемости, устный опрос на зачете		
Владеть: навыками использования основных средств языка Python для автоматизации	мероприятия текущего контроля		
обработки, хранения и визуализации экспериментальных данных, навыками использования	успеваемости, устный опрос на зачете		
программных средств и справочных ресурсов сети интернета.			