Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В. Ломоносова» Химический факультет

УТВЕРЖДАЮ

Декан химического факультета, Акад. РАН, профессор

/В.В. Лунин/

Blun

«27» февраля 2017 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Колебательно-вращательные спектры многоатомных молекул

Уровень высшего образования:

Специалитет

Направление подготовки (специальность):

04.05.01 Фундаментальная и прикладная химия

Направленность (профиль) ОПОП:

Физическая химия

Форма обучения:

очная

Рабочая программа рассмотрена и одобрена Учебно-методической комиссией факультета (протокол №1 от 27.01.2017) Рабочая программа дисциплины разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки / специальности 04.05.01 «Фундаментальная и прикладная химия» (программа специалитета), утвержденного приказом МГУ от 22 июля 2011 года № 729 (в редакции приказов МГУ от 22 ноября 2011 года № 1066, от 21 декабря 2011 года № 1228, от 30 декабря 2011 года № 1289, от 27 апреля 2012 года № 303, от 30 декабря 2016 года № 1671).

Год (годы) приема на обучение 2014/2015, 2015/2016, 2016/2017, 2017/2018, 2018/2019

- 1. Наименование дисциплины (модуля) Колебательные и вращательные спектры многоатомных молекул
- 2. Уровень высшего образования специалитет.
- 3. Направление подготовки: 04.05.01 Фундаментальная и прикладная химия.
- 4. Место дисциплины (модуля) в структуре ООП: вариативная часть ООП, блок ПД.
- 5. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Компетенция	Планируемые результаты обучения по дисциплине (модулю)							
ОПК-1.С. Способность решать	Уметь анализировать научную литературу с целью выбора направления и методов,							
современные проблемы фундаментальной	применяемых в исследовании по теме выпускной квалификационной работы,							
и прикладной химии, используя	Уметь: самостоятельно составлять план исследования							
методологию научного подхода и систему	Владеть навыками поиска, критического анализа, обобщения и систематизации научной							
фундаментальных химических понятий и	информации, постановки целей исследования и выбора оптимальных путей и методов их							
законов	достижения							
СПК-1.С. Способность использовать	Знать: основы теории колебаний молекул в рамках классической теории малых							
теоретические основы современных	колебаний и квантовохимической теории строения молекул, физические и							
физико-химических методов исследования	математические модели силовых полей многоатомных молекул,							
и анализа систем различной природы при	Уметь: уметь формулировать обратные задачи в рамках различных моделей силовых							
решении практических задач	полей, проводить интерпретацию экспериментальных данных колебательной							
	спектроскопии с использованием результатов решения задачи о колебаниях молекул							
	Владеть: основными методами решения обратных задач колебательной спектроскопии с							
	помощью программы СПЕКТР; навыками использования дополнительных данных для							
	интерпретации колебательных спектров многоатомных молекул.							
СПК-4.С. Способность использовать	Знать возможности и ограничения современных расчетных методов молекулярной							
физические и математические модели с	спектроскопии при решении практических задач, возхникающих при обработке							
учетом их возможностей и	экспериментальных данных.							
ограничений при обработке и								
интерпретации экспериментальных								
данных в избранной области физической	получения, хранения, переработки информации при решении физико-химических задач							
химии.								
СПК-5.С. Способность проводить	Знать: методы обработки экспериментальных данных колебательной спектроскопии в							
квантовохимические расчеты	рамках современных устойчивых численных методов с применением результатов							

молекулярных систем различного	квантовохимических расчетов.
строения с использованием современных	Уметь: использовать программные продукты для выполнения стандартных
программных комплексов.	квантовохимических расчетов.
	Уметь: работать с программами обработки результатов квантовохимического расчета
	при совместном использования экспериментальных и теоретических данных при
	решении обратных задач молекулярной спектроскопии

6. Объем дисциплины в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся:

Объем дисциплины (модуля) составляет 2 зачетных единицы (зачет), всего 72 часа, из которых 40 часов составляет контактная работа студента с преподавателем (18 часов занятия лекционного типа, 18 часа – занятия семинарского типа, 2 часа – групповые консультации, 2 часа – промежуточный контроль успеваемости), 32 часа составляет самостоятельная работа студента.

7. Входные требования для освоения дисциплины (модуля), предварительные условия. Обучающийся должен

Знать: Для изучения дисциплины необходимы компетенции, сформированные в результате изучения соответствующих разделов физики, оптики, квантовой механики и математических дисциплин - природа электромагнитного излучения, типы взаимодействия его с веществом; основные определения и фундаментальные понятия квантовомеханической теории строения молекул; базовых знания о современных вычислительных возможностях квантовой химии.

Уметь: пользоваться программами визуализации результатов расчетов и обработки экспериментальных данных.

Владеть: современным языком математической формализации тех физических задач, которые возникают при анализе спектральных данных.

8. Содержание дисциплины (модуля), структурированное по темам

Наименование и краткое	Bcero	В том числе	
содержание разделов и тем дисциплины (модуля),	(часы)	Контактная работа (работа во взаимодействии с преподавателем), часы	Самостоятельная работа обучающегося,
форма промежуточной		из них	часы из них

аттестации по дисциплине (модулю)		Занятия лекционного типа	Занятия семинарского типа	Групповые консультации	Индивидуальные консультации	Учебные занятия, направленны е на проведение текущего контроля успеваемост и, промежуточ ной аттестации	Всего	Выполнение домашних заданий	Подготовка рефератов и т.п	Bcero
Тема 1 Поглощение и комбинационное рассеяние.	8	2	2				4	4		4
Тема 2. Симметрия молекул.	10	2	4				6	4		4
Тема 3 Молекулы типа симметричного, сферического и асимметричного волчка	8	2	2				4	4		4
Тема 4. Вращательные спектры многоатомных молекул.	8	2	2				4	4		4
Тема 5. Колебания многоатомных молекул.	8	2	2				4	4		4
Тема 6. Колебательно- вращательное взаимодействие, проявление в спектрах.	8	2	2				4	4		4
Тема 7. Спектроскопия комбинационного рассеяния (КР)	8	2	2				4	4		4

Тема 8. Расчетные методы в колебательно-вращательной спектроскопии.	12	4	2	2		8	4	4
Промежуточная аттестация <u>зачет</u>	2				2	2		
Итого	72	18	18	2	2	40	32	32

9. Образовательные технологии:

- -применение компьютерных симуляторов, обработка данных на компьютерах, использование компьютерных программ, управляющих приборами;
- -использование средств дистанционного сопровождения учебного процесса;
- -преподавание дисциплин в форме авторских курсов по программам, составленным на основе результатов исследований научных школ МГУ.

10. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю):

По каждой теме указывается материал в источниках из списков основной и вспомогательной литературы, а также из Интернет-ресурсов.

11. Ресурсное обеспечение:

• Перечень основной и вспомогательной учебной литературы ко всему курсу

Основная литература

- 1. Ю.А.Пентин, Г.М.Курамшина. Основы молекулярной спектроскопии. Москва. Бином. 2008.
- 2. И.В.Кочиков, Г.М.Курамшина, Ю.А.Пентин, А.Г.Ягола. Обратные задачи колебательной спектроскопии. Москва. КУРС, 2017.
- 3. В.И.Тюлин. Колебательные и вращательные спектры многоатомных молекул : Введение в теорию. Москва : Изд-во МГУ, 1987.– 204 С.

Дополнительная литература

- 1. М.А.Ельяшевич. Атомная и молекулярная спектроскопия. Москва. Эдиториал УРСС. 1999.
- 2. P.F. Bernath. Spectra of atoms and molecules. Oxford, University Press, 2005.

12. Язык преподавания – русский

13. Преподаватели:

- 1. в.н.с., д.х.н., доцент Курамшина Гульнара Маратовна, кафедра физической химии химического факультета МГУ, kuramshi@phys.chem.msu.ru, +7(495)939-29-50
- 2. доцент, д.ф-м.н. Пазюк Елена Александровна, кафедра физической химии химического факультета МГУ, pazyuk@phys.chem.msu.ru, +7(495)939-28-25

Фонды оценочных средств, необходимые для оценки результатов обучения

Образцы оценочных средств для текущего контроля усвоения материала и промежуточной аттестации - зачета. На зачете проверяется достижение промежуточных индикаторов компетенций, перечисленных в п.5.

Вопросы для зачета:

- 1. Квантовомеханический подход к описанию вращательных и колебательных спектров многоатомных молекул.
- 2. Симметрия молекул. Правила отбора в ИК и КР спектрах.
- 3. Анализ нормальных колебаний и определение симметрии молекул с использованием экспериментальных данных по ИК и КР спектрам.
- 4. Интенсивности линий. Параллельные и перпендикулярные полосы. Структура полос горячих переходов. Анализ вращательной структуры.
- 5. Линейные молекулы: вращательные состояния, симметрия и спин системы.
- 6. Линейные молекулы: колебательный момент, кориолисово взаимодействие и *l*-удвоение, типы полос в спектрах ИК-поглощения.
- 7. Инфракрасный спектр поглощения линейной молекулы. Правила отбора и матричные элементы для вращательных переходов.
- 8. Правила отбора в спектрах ИК-поглощения и КР для вращательных переходов многоатомных молекул типа симметричного волчка.
- 9. Инфракрасный спектр поглощения молекулы типа симметричного волчка. Параллельные и перпендикулярные полосы. Чередование интенсивностей.
- 10. Правила отбора в спектрах ИК-поглощения и КР многоатомных молекул.
- 11. Анализ структуры молекулы по предложенному спектру ИК-спектру поглощения.
- 12. Для какого агрегатного состояния вещества из сопоставления ИК и КР спектров получают наиболее надежные данные о симметрии молекулы и почему?
- 13. Как согласовать определение нормального колебания и понятие характеристической или групповой частоты?

14. Каковы отличия вращательной спектроскопии КР от микроволновой спектроскопии? от ИК спектроскопии? Как ИК и КР спектры взаимно дополняют друг друга?

Методические материалы для проведения процедур оценивания результатов обучения

Шкала оценивания знаний, умений и навыков является единой для всех дисциплин (приведена в таблице ниже)

	ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю)								
Оценка	2	3	4	5					
Результат									
Знания	Отсутствие	Фрагментарные знания	Общие, но не структурированные	Сформированные					
	знаний		знания	систематические знания					
Умения	Отсутствие	В целом успешное, но не	В целом успешное, но содержащее	Успешное и систематическое					
	умений	систематическое умение	отдельные пробелы умение	умение					
			(допускает неточности						
			непринципиального характера)						
Навыки	Отсутствие	Наличие отдельных	В целом, сформированные навыки,	Сформированные навыки,					
(владения)	навыков	навыков	но не в активной форме	применяемые при решении задач					

РЕЗУЛЬТАТ ОБУЧЕНИЯ	ФОРМА	ОЦЕНИВА	ния	
по дисциплине (модулю)				
Знать: основы теории колебаний молекул в рамках классической теории малых колебаний и квантовохимической теории строения молекул, физические и математические модели силовых полей многоатомных молекул. Знать возможности и ограничения современных расчетных методов молекулярной спектроскопии при решении практических задач, возхникающих при обработке экспериментальных данных. Знать: методы обработки экспериментальных данных колебательной спектроскопии в рамках современных устойчивых численных методов с применением результатов квантовохимических расчетов.	мероприятия успеваемости, зачете	текущего устный	контр опрос	
Уметь анализировать научную литературу с целью выбора направления и методов,	мероприятия	текущего	контр	ОЛЯ
применяемых в исследовании по теме выпускной квалификационной работы.	успеваемости,	устный	опрос	на

Уметь: самостоятельно составлять план исследования.	зачете
Уметь: уметь формулировать обратные задачи в рамках различных моделей силовых полей,	
проводить интерпретацию экспериментальных данных колебательной спектроскопии с	
использованием результатов решения задачи о колебаниях молекул.	
Уметь: использовать программные продукты для выполнения стандартных	
квантовохимических расчетов.	
Уметь: работать с программами обработки результатов квантовохимического расчета при	
совместном использования экспериментальных и теоретических данных при решении	
обратных задач молекулярной спектроскопии.	
Владеть навыками поиска, критического анализа, обобщения и систематизации научной	мероприятия текущего контроля
информации, постановки целей исследования и выбора оптимальных путей и методов их	успеваемости, устный опрос на
достижения	зачете
Владеть: основными методами решения обратных задач колебательной спектроскопии с	
помощью программы СПЕКТР; навыками использования дополнительных данных для	
интерпретации колебательных спектров многоатомных молекул.	
Владеть: навыками использования программных средств и работы в компьютерных сетях,	
использования ресурсов интернета; основными методами, способами и средствами получения,	
хранения, переработки информации при решении физико-химических задач.	