Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В. Ломоносова» Химический факультет

УТВЕРЖДАЮ

Декан химического факультета, Акад. РАН, профессор

/В.В. Лунин/

Blue

«27» февраля 2017 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Моделирование поверхностей потенциальной энергии для химических реакций

Уровень высшего образования:

Специалитет

Направление подготовки (специальность):

04.05.01 Фундаментальная и прикладная химия

Направленность (профиль) ОПОП:

Физическая химия

Форма обучения:

очная

Рабочая программа рассмотрена и одобрена Учебно-методической комиссией факультета (протокол №1 от 27.01.2017) Рабочая программа дисциплины разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки / специальности 04.05.01 «Фундаментальная и прикладная химия» (программа специалитета), утвержденного приказом МГУ от 22 июля 2011 года № 729 (в редакции приказов МГУ от 22 ноября 2011 года № 1066, от 21 декабря 2011 года № 1228, от 30 декабря 2011 года № 1289, от 27 апреля 2012 года № 303, от 30 декабря 2016 года № 1671).

Год (годы) приема на обучение 2014/2015, 2015/2016, 2016/2017, 2017/2018, 2018/2019

·____

- 1. Наименование дисциплины (модуля) Моделирование поверхностей потенциальной энергии для химических реакций
- 2. Уровень высшего образования специалитет.
- 3. Направление подготовки: 04.05.01 Фундаментальная и прикладная химия.
- 4. Место дисциплины (модуля) в структуре ООП: вариативная часть ООП, блок ПД.
- 5. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Компетенция	Планируемые результаты обучения по дисциплине (модулю)
ОПК-1.С. Способность решать современные проблемы фундаментальной и прикладной химии, используя методологию научного подхода и систему фундаментальных химических понятий и законов	Уметь анализировать научную литературу с целью выбора направления и методов, применяемых в исследовании по теме выпускной квалификационной работы, Уметь: самостоятельно составлять план исследования Владеть навыками поиска, критического анализа, обобщения и систематизации научной информации, постановки целей исследования и выбора оптимальных путей и методов их достижения
СПК-1.С. Способность использовать теоретические основы современных физико-химических методов исследования и анализа систем различной природы при решении практических задач	Знать: основы теории колебаний молекулы в рамках классической теории малых колебаний и квантовохимической теории строения молекул Знать: подходы и принципы, используемые для построения аппарата современных квантово-химических методов исследования электронных состояний малых молекул, относительные преимущества и недостатки существующих методов и области их эффективного применения Знать: методологию поиска информации в открытых источниках и специализированных базах данных Владеть: навыками поиска данных в открытых источниках (в том числе, в информационных базах данных) и применения их при решении практических химических задач Владеть: навыками самостоятельного получения знаний в области квантовой химии, молекулярного моделирования
СПК-4.С. Способность использовать физические и математические модели с учетом их возможностей и ограничений при обработке и	Знать: подходы и принципы, используемые для построения аппарата современных квантово-химических методов исследования электронных состояний малых молекул, относительные преимущества и недостатки существующих методов и области их эффективного применения

интерпретации экспериментальных данных в избранной области физической	Владеть: навыками обоснованного выбора средств решения задач современной физической химии методами квантовой механики молекул					
химии						
СПК-5.С. Способность проводить	Знать: основные базы данных, используемые в практике научных исследований					
квантовохимические, термодинамические	химической направленности					
и кинетические расчеты с использованием	Уметь: применять современные методы компьютерного моделирования для расчета,					
современных программных комплексов и	и интерпретации и предсказания строения и физико-химических свойств молекулярных					
баз данных	систем					
	Уметь: формировать системы базовых уравнений методов, представленных в спецкурсе,					
	строить их расчётные схемы, выбирать метод исследования электронных состояний					
	рассматриваемой молекулы, ресурсы которого позволяют учесть особенности структуры					
	этих состояний					

6. Объем дисциплины в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся:

Объем дисциплины (модуля) составляет 3 зачетных единицы, всего 108 часа, из которых 40 часов составляет контактная работа студента с преподавателем (18 часов занятия лекционного типа, 18 часов – занятия семинарского типа, 2 часа – групповые консультации, 2 часа – промежуточный контроль успеваемости), 68 часов составляет самостоятельная работа студента.

7. Входные требования для освоения дисциплины (модуля), предварительные условия. Обучающийся должен

Знать: основы квантовой химии и строения молекул; основыные принципы молекулярного моделирования. Знать подходы и принципы, используемые для построения аппарата современных квантово-химических методов исследования электронных состояний малых молекул

Уметь: работать с информационными базами данных, основам работы с программным обеспечением. Применять современные методы компьютерного моделирования.

Владеть: навыками поиска данных в открытых источниках (в том числе, в информационных базах данных) и применения их при решении практических химических задач

8. Содержание дисциплины (модуля), структурированное по темам.

Наименование и краткое	Всего	В том числе

содержание разделов и тем дисциплины (модуля), форма промежуточной	(часы)	Контактная работа (работа во взаимодействии с преподавателем), часы из них					Самостоятельная работа обучающегося, часы из них			
форма промежуточной аттестации по дисциплине (модулю)		Занятия лекционного типа	Занятия семинарского типа	Групповые консультации	Индивидуальные консультации	Учебные занятия, направленны е на проведение текущего контроля успеваемост и, промежуточ ной аттестации	Bcero	Выполнение домашних заданий	Подготовка рефератов и т.п	Bcero
Тема 1. Стандартный молекулярный расчет. Поиск равновесной геометрической конфигурации, оценка частот колебаний.	12	2	2				4	8		8
Тема 2. Задача глобального исследования ППЭ, изомеры и конформеры. Проблема поиска глобального минимума.	12	2	2				4	8		8
Тема 3. Приближение эффективного остовного потенциала (ECP).	12	2	2				4	8		8
Тема 4. Проблема размерной	12	2	2				4	8		8

согласованности и метод связанных кластеров. Варианты CCSD, CCSD(T).								
Тема 5. Поиск переходных состояний. Выбор начальной структуры.	12	2	2			4	8	8
Тема 6. Моделирование химической реакции с радикальной перестройкой электронной структуры.	12	2	2			4	8	8
Тема 7. Построение пути реакции методом IRC. Прямая и обратная полуреакции.	12	2	2			4	8	8
Тема 8. Метод колебательного ССП. Применение метода для оценки ангармоничности колебаний	10	2	2			4	6	6
Тема 9. Общая структура ППЭ. Понятие о методе гамильтониана реакционного пути.	12	2	2	2		6	6	6
Промежуточная аттестация <u>зачет</u>	2				2	2		
Итого	108	18	18	2	 2	40	68	68

9. Образовательные технологии:

-применение компьютерных симуляторов, обработка данных на компьютерах, использование компьютерных программ,

управляющих приборами;

- -использование средств дистанционного сопровождения учебного процесса;
- -преподавание дисциплин в форме авторских курсов по программам, составленным на основе результатов исследований научных школ МГУ.

10. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю):

Пакет презентаций по каждому разделу курса

11. Ресурсное обеспечение:

• Перечень основной и вспомогательной учебной литературы ко всему курсу

Основная литература

- 1. Кларк Т., Компьютерная химия, М.: Мир, 1990.
- 2. Минкин В.И., Симкин Б.Я., Миняев Р.М. Теория строения молекул. Ростов-Дон: "Феникс" 1997.
- 3. Степанов Н.Ф., Пупышев В.И. Квантовая механика молекул и квантовая химия. М.: "МГУ", 1991.
- 4. Фларри Р. Квантовая химия, М.: "Мир". 1985

Дополнительная литература

- 1. Пупышев В.И. Дополнительные главы квантовой механики молекул. Введение в теорию ССП. Части І-ІІІ. М.: "МГУ",2008
- 2. Симкин Б.Я., Клецкий М.Е., Глуховцев М.Н. Задачи по теории строения молекул. Ростов-Дон: "Феникс" 1997.
- 3. Szabo A., Ostlund N.S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, McGraw-Hill Publishing Comp.,1996

Программное обеспечение и Интернет ресурсы

- 1. GAMESS-US webpage: http://www.msg.ameslab.gov/GAMESS/
- 2. Granovsky A.A., Firefly version 8. http://classic.chem.msu.su/gran/gamess/index.html
- 3. Сетевая библиотечка базисов https://bse.pnl.gov/bse/portal.
- 4. База данных NIST http://webbook.nist.gov/chemistry/form-ser.html
- 5. Визуализатор ChemCraftLite http://www.chemcraftprog.com/

12. Язык преподавания – русский

13. Преподаватели:

доцент, к.х.н., Ермилов Александр Юрьевич, кафедра физической химии химического факультета МГУ, sanchik-u@yandex.ru, 8-495-939-22-86

Фонды оценочных средств, необходимые для оценки результатов обучения

Образцы оценочных средств для текущего контроля усвоения материала и промежуточной аттестации - зачета. На зачете проверяется достижение промежуточных индикаторов компетенций, перечисленных в п.5.

Вопросы для зачета:

- 1. Определите оптимальную геометрию молекулы этилена методом CCSD(T), используя опцию вычисления численного градиента(базис cc-pvdz). Сравните результаты расчета с экспериментом(NIST). Как соотносятся результаты метода связанных кластеров и MP2?
- 2. Рассчитайте частоты колебаний молекулы этилена в рамках метода связанных кластеров(CCSD(T)), используя численный расчет матрицы Гессе (базис cc-pvdz). Сравните результаты расчета с экспериментом(NIST) и выполните отнесение частот. Как соотносятся результаты метода связанных кластеров и MP2?
- 3. Рассчитайте оптимальную геометрию и частоты колебаний молекулы метана в рамках теории возмущений MP2, используя базис cc-pvdz. Сравните результаты расчета с экспериментом(NIST) и выполните отнесение частот. Как изменится погрешность расчетов при использовании базиса cc-pvtz?
- 4. Рассчитайте частоты колебаний молекулы метана в рамках метода связанных кластеров(CCSD(T)), используя численный расчет матрицы Гессе(базис cc-pvdz). Сравните результаты расчета с экспериментом(NIST) и выполните отнесение частот. Как соотносятся результаты метода связанных кластеров и MP2?
- 5. Рассчитайте частоты колебаний молекулы метана в рамках метода связанных кластеров(CCSD(T)), используя численный расчет матрицы Гессе(базис cc-pvdz). Сравните результаты расчета с экспериментом(NIST) и выполните отнесение частот. Как соотносятся результаты метода связанных кластеров и MP2?
- 6. Рассчитайте оптимальную геометрию и частоты колебаний молекулы формальдегида в рамках теории возмущений MP2, используя базис сс-pvdz. Сравните результаты расчета с экспериментом(NIST) и выполните отнесение частот. Как изменится погрешность расчетов при использовании базиса сс-pvtz?
- 7. Определите оптимальную геометрию молекулы формальдегида методом CCSD(T), используя опцию вычисления численного

- градиента(базис cc-pvdz). Сравните результаты расчета с экспериментом(NIST). Как соотносятся результаты метода связанных кластеров и MP2?
- 8. Рассчитайте частоты колебаний молекулы формальдегида в рамках метода связанных кластеров(CCSD(T)), используя численный расчет матрицы Гессе(базис cc-pvdz). Сравните результаты расчета с экспериментом(NIST) и выполните отнесение частот. Как соотносятся результаты метода связанных кластеров и MP2?
- 9. Рассчитать частоты колебаний пероксомуравьиной кислоты HCOOOH и HCOOOD. Метод расчета MP2/6-31G*. Каков сдвиг характеристического колебания СО при дейтерировании для обоих изомеров молекулы? Рассчитайте равновесные геометрические конфигурации и частоты колебаний изотопозамещенных молекул воды: H₂O, HDO и D₂O. Метод расчета MP2/6-31G*. Как результаты расчетов соотносятся с экспериментальными данными(NIST)?
- 10. Рассмотрите описание валентных МО в приближении ЕСР(ЭОП) на примерах молекулы димера лития и одиночного атома. Оценить точность описания ключевых характеристик потенциала ионизации, свойств (квадрупольного момента), равновесной геометрической конфигурации, частот колебаний.
- 11. Методом эффективного остовного потенциала (ЕСР) в варианте SBK рассчитайте равновесную структуру молекул дигалогенидов (F2-At2). Как соотносятся оценки потенциала ионизации, равновесного межъядерного расстояния при использовании приближения ЕСР?
- 12. Найти оптимальную геометрию и частоты гармонических колебаний для молекулы этилена (C2H4) в рамках теории возмущений MP2, используя псевдопотенциал SBKJC, встроенный в GAMESS-US. Как результаты расчетов соотносятся с экспериментальными данными(NIST)?
- 13. Найти оптимальную геометрию и частоты гармонических колебаний для молекулы пероксомуравьиной кислоты
- 14. (HCOOOH) в рамках теории возмущений MP2, используя псевдопотенциал SBKJC, встроенный в GAMESS-US.
- 15. В рамках теории возмущений MP2 найти оптимальную геометрию и частоты гармонических колебаний для этилена (C2H4), используя базис SBKJC Polarized (p,2d) LFK(сетевая базисная библиотека) и псевдопотенциал SBKJC. Как результаты расчетов соотносятся с экспериментальными данными(NIST)?
- 16.В рамках теории возмущений MP2 найти оптимальную геометрию и частоты гармонических колебаний для молекулы пероксомуравьиной кислоты (HCOOOH), используя базис SBKJC Polarized (p,2d) LFK(сетевая базисная библиотека) и псевдопотенциал SBKJC.
- 17. В рамках теории возмущений MP2 найти оптимальную геометрию и частоты гармонических колебаний для молекулы этилена, используя псевдопотенциал и базис Stuttgart RLC ECP(сетевая базисная библиотека). Как результаты расчетов соотносятся с экспериментальными данными(NIST)?

- 18. Методом Хартри-Фока рассчитайте равновесную структуру и частоту валентного колебания молекулы AuH в двух различных псевдопотенциалах (МНF и MWB). Как учет скалярных релятивистских поправок, предусмотренных в потенциале MWB, сказывается на результатах расчета геометрии?
- 19. Найти переходное состояние в молекуле бутадиена, отвечающего внутреннему вращению около простой связи. Метод расчета MP2/6-31G*. Какова величина энергетического барьера для прямой (транс-цис) и обратной (цис-транс) реакций?
- 20. Найти переходное состояние в молекуле акролеина, отвечающего внутреннему вращению около простой связи. Метод расчета MP2/6-31G*. Какова величина энергетического барьера?
- 21. Найти структуру переходного состояния при инверсии аммиака, используя метод MP2 и базис сс-pvtz. Насколько изменяются длины связей NH в седловой точке по отношению к равновесному значению в минимуме?
- 22. Найти структуру переходного состояния в реакции миграции протона в молекуле муравьиной кислоты, используя метод MP2 и базис сс-pvtz. Насколько изменяются длины связей CO в седловой точке по отношению к равновесным значениям одинарной и двойной связей в минимуме? Какова энергия активации реакции миграции?
- 23. Рассчитайте структуру переходного состояния в реакции присоединения молекулы фтороводорода к пропилену. Уровень расчета B3LYP/6-31G*. Рассмотрите вариант присоединения по правилу Марковникова. Какова энергия активации реакции?
- 24. Рассчитайте структуру переходного состояния в реакции присоединения молекулы фтороводорода к пропилену. Уровень расчета B3LYP/6-31G*. Рассмотрите вариант присоединения против правила Марковникова. Какова энергия активации реакции?
- 25. Методом CASSCF(4,4) найти переходное состояние реакции циклизации цис-бутадиена в циклобутен по конротаторному механизму. Как изменяются активные МО вдоль предполагаемого пути реакции? Какова величина энергии активации?
- 26. Построить пути обеих полуреакций для цис-транс изомеризации в бутадиене. Уровень расчета MP2/6-31G*. Каково значение энергии активации? Как изменяются длины связей С-С вдоль реакционного пути?
- 27. Построить путь полуреакции для инверсии аммиака. Уровень расчета MP2/6-31G*. Каково значение энергии активации? Какова поправка на нулевые колебания?
- 28. Построить путь реакции (полуреакции) для реакции миграции протона в молекуле муравьиной кислоты. Уровень расчета MP2/6-31G*. Как меняются длины связей С-О вдоль пути реакции? Каков вклад нулевых колебаний в величину энергетического барьера?
- 29. Построить пути обеих полуреакций для задачи изомеризации акролеина. Метод расчета MP2/6-31G*. Какова величина энергетического барьера, и какова поправка на нулевые колебания?
- 30. Построить пути обеих полуреакций для задачи о присоединении фтороводорода к молекуле пропилена. Уровень расчета B3LYP/6-31G*. Рассмотрите вариант присоединения по правилу Марковникова. Как изменяются длины связей С-F и H-F вдоль

реакционного пути?

- 31. Построить пути обеих полуреакций для задачи о присоединении фтороводорода к молекуле пропилена. Уровень расчета B3LYP/6-31G*. Рассмотрите вариант присоединения против правила Марковникова. Как изменяются длины связей С-F и H-F вдоль реакционного пути?
- 32. Построить пути обеих полуреакций для задачи циклизации цис-бутадиена в циклобутен по конротаторному механизму. Как изменяются длины связей С-С вдоль реакционного пути?
- 33. Рассчитать интенсивности ИК- и КР-спектров молекулы этилена.
- 34. Оценить влияние расчетной методики (базис, учет электронной корреляции по MP2) на величины КР-интенсивностей на примере молекулы метана.
- 35. Выполнить полное расчетное исследование реакции миграции протона в молекуле уксусной кислоты.

Методические материалы для проведения процедур оценивания результатов обучения

Шкала оценивания знаний, умений и навыков является единой для всех дисциплин (приведена в таблице ниже)

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю)						
Оценка	2	3	4	5		
Результат						
Знания	Отсутствие	Фрагментарные знания	Общие, но не структурированные	Сформированные		
	знаний		знания	систематические знания		
Умения	Отсутствие	В целом успешное, но не	В целом успешное, но содержащее	Успешное и систематическое		
	умений	систематическое умение	отдельные пробелы умение	умение		
			(допускает неточности			
			непринципиального характера)			
Навыки	Отсутствие	Наличие отдельных	В целом, сформированные навыки,	Сформированные навыки,		
(владения)	навыков	навыков	но не в активной форме	применяемые при решении задач		

РЕЗУЛЬТАТ ОБУЧЕНИЯ	ФОРМА ОЦЕНИВАНИЯ
по дисциплине (модулю)	
Знать: основы теории колебаний молекулы в рамках классической теории малых колебаний и	мероприятия текущего контроля
квантовохимической теории строения молекул	успеваемости, устный опрос на
Знать: подходы и принципы, используемые для построения аппарата современных квантово-	зачете
химических методов исследования электронных состояний малых молекул, относительные	

преимущества и недостатки существующих методов и области их эффективного применения Знать: методологию поиска информации в открытых источниках и специализированных базах данных Знать: подходы и принципы, используемые для построения аппарата современных квантовохимических методов исследования электронных состояний малых молекул, относительные преимущества и недостатки существующих методов и области их эффективного применения Знать: основные базы данных, используемые в практике научных исследований химической направленности	
Уметь анализировать научную литературу с целью выбора направления и методов, применяемых в исследовании по теме выпускной квалификационной работы, Уметь: самостоятельно составлять план исследования Уметь: применять современные методы компьютерного моделирования для расчета, интерпретации и предсказания строения и физико-химических свойств молекулярных систем Уметь: формировать системы базовых уравнений методов, представленных в спецкурсе, строить их расчётные схемы, выбирать метод исследования электронных состояний рассматриваемой молекулы, ресурсы которого позволяют учесть особенности структуры этих состояний	мероприятия текущего контроля успеваемости, устный опрос на зачете
Владеть навыками поиска, критического анализа, обобщения и систематизации научной информации, постановки целей исследования и выбора оптимальных путей и методов их достижения Владеть: навыками поиска данных в открытых источниках (в том числе, в информационных базах данных) и применения их при решении практических химических задач Владеть: навыками самостоятельного получения знаний в области квантовой химии, молекулярного моделирования Владеть: навыками обоснованного выбора средств решения задач современной физической химии методами квантовой механики молекул	мероприятия текущего контроля успеваемости, устный опрос на зачете