Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный университет имени М.В. Ломоносова» Химический факультет

УТВЕРЖДАЮ

И.о. декана химического факультета, Чл.-корр.. РАН, профессор

/С.Н. Калмыков/

«20» мая 2019 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Современные методы химического анализа, основанные на измерении скорости реакции

Уровень высшего образования:

Специалитет

Направление подготовки (специальность):

04.05.01 Фундаментальная и прикладная химия

Направленность (профиль) ОПОП:

Аналитическая химия

Форма обучения:

очная

Рабочая программа рассмотрена и одобрена Учебно-методической комиссией факультета (протокол №3 от 13.05.2019)

Рабочая программа дисциплины разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки / специальности 04.05.01 «Фундаментальная и прикладная химия» (программа специалитета), утвержденного приказом МГУ от 29 декабря 2018 года № 1770 (с изменениями по приказу № 1109 от 11.09.2019).

Год (годы) приема на обучение 2019/2020, 2020/2021

- 1. Место дисциплины (модуля) в структуре ООП: вариативная часть ООП, блок ПД.
- 2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников). Соответствие результатов обучения по данному элементу ОПОП результатам освоения ОПОП (в форме компетенция индикатор ЗУВ) указано в Общей характеристике ОПОП.

Компетенция	Индикатор достижения	Планируемые результаты обучения по дисциплине					
		(модулю)					
СПК-2.С. Способен применять	СПК-2.С.1. Использует физические	Знать: законы, лежащие в основе различных методовисследова-					
законы, лежащие в основе	законы и закономерности при ин-	н- ния и их развития.					
различных методов химиче-	терпретации и обсуждении резуль-	Уметь: выбирать и обосновывать конкретные кинетические и био-					
ского анализа, при обсужде-	татов аналитических эксперимен-	химические методы в зависимостиот природы аналитов и характе-					
нии полученных результатов,	тов, представленных в литературе и	ра сопутствующих веществ, а также условий эксперимента.					
в том числе с привлечением	полученных при решении постав-	Владеть: основными химическими теориями, концепциями, зако-					
информационных баз данных	ленных задач	нами, описывающими принципы кинетических и биохимических					
		методов анализа и применять основные законы химии при обсуж-					
		дении полученных результатов, в том числе с привлечениемин-					
		формационных баз данных.					
СПК-3.С. Способен сопостав-	СПК-3.С.1. Планирует схему анализа	Знать: достоинства и недостатки различных кинетических, био-					
лять возможности и области	с учетом возможностей конкретного	химических методов анализа					
применения, достоинства и	метода	Уметь: сопоставлять возможности и области применения различ-					
недостатки различных мето-		ных кинетических и биохимическихметодов анализа.					
дов аналитической химии		Владеть: навыками планирования и осуществления химического					
		анализа, выполняемого с использованием кинетических и биохи-					
		мических методов					
СПК-4.С. Способен анализиро-	СПК-4.С.1 Сопоставляет данные раз-	Знать: основные поисковые системы, базы данных иведущие					
вать научную литературу с це-	ных источников и предлагает воз-	периодические издания по аналитической химии.					
лью выбора методов для ре-	можные способы решения конкрет-	Уметь: анализировать научную литературу с целью выбора кине-					
шения конкретных аналитиче-	ных аналитических задач	тических и биохимических методов анализадля решения кон-					
ских задач, самостоятельно		кретных аналитических задач.					
планировать исследования		Владеть: навыками к интерпретации и обсуждения результатов					
		проведенного исследования, основываясьна современной литера-					
		туре по теории и практике кинетических и биохимических методов					
		анализа.					

3. Объем дисциплины в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся:

Объем дисциплины (модуля) составляет 3 зачетных единицы, всего 108 часов, из которых 62 часа составляет контактная работа студента с преподавателем (28 часов занятия лекционного типа, 28 часов – занятия семинарского типа, 4 часа – групповые консультации, 2 часа – промежуточный контроль успеваемости), 46 часа составляет самостоятельная работа студента.

4. Входные требования для освоения дисциплины (модуля), предварительные условия.

Обучающийся должен

знать: сущность, физико-химические основы кинетических и ферментативных методов анализа; основы иммуноферментных и биологических методов; преимущества, недостатки методов и возможность их применения для решения различных практических задач; подходы к повышению чувствительности и селективности кинетических и биохимических методов для решения конкретных проблем на базе полученных теоретических знаний; области применения методов.

уметь: самостоятельно ставить задачу разработки методики определения компонентов индикаторных систем – катализаторов, субстратов, ингибиторов и активаторов катализаторов в различных объектах; выбирать условия улучшения метрологических характеристик методик; обсуждать результаты проведенного исследования, ориентироваться в современной литературе по теории кинетических и биохимических методов и применению их в различных областях, вести дискуссию по вопросам закономерностей и использования кинетических и биохимических методов; применять информационные и компьютерные технологии при проведении анализа реальных объектов, эксплуатации оборудования и обработке полученных результатов.

владеть: основами теории фундаментальных разделов химии (прежде всего неорганической, аналитической, органической, физической, химии высокомолекулярных соединений, химии биологических объектов) и применять основные законы химии при обсуждении полученных результатов, в том числе с привлечением информационных баз данных; навыками тонкого химического эксперимента; навыками работы на современных приборах, используемых для регистрации скорости индикаторных процессов.

5. Содержание дисциплины (модуля), структурированное по темам.

Наименование и краткое содер-	Bcero	В том числе	ісле		
жание разделов и тем дисцип- лины (модуля),	(часы)	Контактная работа (работа во взаимодействии с преподавателем), часы	Самостоятельная рабо- та обучающегося, часы		
форма промежуточной аттеста-		из них	из них		

		Занятия лекционного типа	Занятия семинарского типа	Групповые консульта- ции	Индивидуальные кон- сультации	Учебные занятия, направленные на проведение текущего контроля успеваемости, промежуточной аттестации	Bcero	Выполнение домашних заданий	Подготовка рефератов и т.п	Bcero
Раздел 1. Значение скорости в химических процессах. Основные законы кинетики. Кинетические методы. Сущность и классификация. Основные понятия и термины. Различные варианты кинетических методов. Их применение.	12	4	4				8	2	2	4
Раздел 2. Сущность биохимических методов анализа. Ферментативные методы анализа. Иммобилизованные ферменты и их применение в химическом анализе. Биосенсоры.	22	12	6				18	2	2	4
Раздел 3. Иммунный анализ. Сущность иммунного анализа. Иммунный анализ с разделением и без разделения компонентов (гетерогенный и гомогенный иммуноанализ). Иммуноферментный анализ. Метрологические характеристики. Области применения.	20	10	4	2			16	2	2	4

Раздел 4. Биологические методы анализа. Типы индикаторных организмов: микроорганизмы, беспозвоночные, позвоночные, растения. Метрологические характеристики. Области применения.	18	10	6			16	2	2
Промежуточная аттестация <u>экза-</u> <u>мен</u>	36				4	4		32
Итого	108	36	20	2	4	62		46

6. Образовательные технологии:

- -применение компьютерных симуляторов, обработка данных на компьютерах, использование компьютерных программ, управляющих приборами;
- -использование средств дистанционного сопровождения учебного процесса;
- -преподавание дисциплин в форме авторских курсов по программам, составленным на основе результатов исследований научных школ МГУ.

7. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю):

Студентам предоставляется программа курса, план занятий и задания для самостоятельной работы, презентации к лекционным занятиям.

Вопросы для тестовых опросов по темам:

Кинетические методы анализа.

- 1. Какие принципы положены в основу кинетических методов в их каталитическом и некаталитическом вариантах?
- 2. Перечислите требования, предъявляемые к индикаторным реакциям.
- 3. Какие способы используют чаще всего в кинетических методах для наблюдения за скоростью индикаторной реакции?
- 4. Какой из трех способов тангенсов, фиксированного времени и фиксированной концентрации является самым: а) точным; б) простым; в) удобным для автоматизации?
- 5. Каковы преимущества и недостатки кинетических методов в их каталитическом и некаталитическом вариантах?
- 6. Каковы области применения кинетических методов? Приведите примеры их использования.

Биохимические методы.

- 1. Что является аналитическим сигналом в биохимических методах?
- 2. Каковы особенности действия фермента как катализатора?
- 3. Какие компоненты ферментативного процесса могут быть определены ферментативным методом?
- 4.Чем ограничены нижняя и верхняя границы определяемых содержаний субстрата, фермента и ингибитора?

Иммунные методы

- 1. Какой принцип положен в основу иммунохимических методов?
- 2. Что такое антиген, антитело, иммунный комплекс?
- 3. Какие метки используют в иммунохимических методах, какова их роль?
- 4. Каковы преимущества иммунохимических методов и области их применения?

Биологические методы.

- 1.На чем основан биологический метод?
- 2. Что является аналитическим сигналом в биологическом методе?
- 3. Какие индикаторные организмы используют в биологическом методе?
- 4. Какие задачи можно решать с помощью биологического метода, каковы области его применения?

Темы рефератов:

- 1. Применение каталитического и некаталитического вариантов кинетических методов в практике химического анализа.
- 2. Способы иммобилизации ферментов различных классов.
- 3. Применение иммобилизованных ферментов во внелабораторном анализе.
- 4. Биосенсоры. История развития. Применение для решения задач экологического контроля, анализа биологических жидкостей.
- 5. Варианты иммунохимического анализа. Примеры использования в медицинской практике.
- 6. Использование биологических методов в анализе объектов окружающей среды.

8. Ресурсное обеспечение:

• Перечень основной и вспомогательной учебной литературы ко всему курсу

Перечень основной и вспомогательной учебной литературы ко всему курсу. Со всех компьютеров МГУ организован доступ к полным текстам научных журналов и книг на русском и иностранных языках. Доступ открыт по IP-адресам, логин и пароль не требуются: http://nbmgu.ru/

Основная литература

1. Основы аналитической химии. Т.1. / Под ред. Ю.А. Золотова (учебник, рекомендован Министерством образования Российской Федерации в качестве учебника для студентов химического направления и химических специальностей высших учебных заведений). 6-е

- изд., перераб. и доп. М.: Академия, 2014, 400 с
- 2. Перес-Бендито Д., Сильва М. Кинетические методы в аналитической химии. М.: Мир, 1991.
- 3. Яцимирский К. Б. Кинетические методы анализа. М.: Химия, 1967.
- 4. Диксон М., Уэбб Э. Ферменты. т.т. 1 3. М.: Мир, 1984
- 5. Келети Т. Основы ферментативной кинетики. М.: Мир, 1990.
- 6. Варфоломеев С.Д., Гуревич К.Г. Биокинетика. М.: ФАИР-ПРЕСС, 1999.
- 7. Егоров А.М. Теория и практика иммуноферментного анализа. М.: Высшая школа, 1991.

Дополнительная литература

- 1. Марк Г., Рехниц Г. Кинетика в аналитической химии. М.: Мир, 1972.
- 2. Мюллер Г., Отто М., Вернер Г. Каталитические методы в анализе следов элементов. М.: Мир, 1983.
- 3. Варфоломеев С.Д. Химическая энзимология. М.: Академия, 2008.
- 4. Эггинс Б. Химические и биологические сенсоры. М.: Техносфера, 2005.
- 5. Биохимические методы анализа. Проблемы аналитической химии. Т.12./ Под ред. Б.Б. Дзантиева. М.: Наука. 2010.
- 6. Туманов А.А. Биологические методы анализа. Журнал аналитической химии. 1988.
 - Материально-техническое обеспечение: занятия проводятся в обычной аудитории, оснащенной доской и мелом (маркерами), персональным компьютером и мультимедийным проектором
- 9. Язык преподавания русский

10. Преподаватели:

- 1. Шеховцова Татьяна Николаевна, д.х.н., профессор; tnshekh@yandex.ru
- 2. Беклемишев Михаил Константинович, д.х.н., вед. науч. corp.; beklem@inbox.ru

Фонды оценочных средств, необходимые для оценки результатов обучения

Образцы оценочных средств для текущего контроля усвоения материала и промежуточной аттестации - экзамена. На экзамене проверяется достижение промежуточных индикаторов компетенций, перечисленных в п.2.

Вопросы к экзамену

- 1. Сущность кинетических методов, их классификация. Индикаторная реакция и индикаторное вещество, требования к ним. Методы измерения скорости индикаторной реакции.
- 2. Способы определения содержания вещества по данным кинетических измерений. Дифференциальный и интегральный варианты методов анализа. Способ тангенсов, фиксированного времени и фиксированной концентрации, их видоизменения. Определение неизвест-

ной концентрации по длительности индукционного периода.

- 3. Типы реакций, используемых в кинетических методах. Каталитические реакции. Понятие об активаторах и ингибиторах. Некаталитические реакции.
- 4. Преимущества и недостатки кинетических методов анализа в их каталитическом и некаталитическом вариантах. Чувствительность и селективность кинетических методов, пути их повышения.
- 5. Кинетические тест-методики. Отличия от равновесных тест-систем с визуальным наблюдением сигнала. Особенности разработки тест-систем с использованием кинетических методов. Примеры.
- 6. Схемы протекания индикаторных реакций. Окисление ароматических аминов персульфатом, пероксидом и периодатом. Катализ и замедление этих реакций ионами переходных металлов.
- 7. Определение органических соединений кинетическими методами: по собственному действию; по влиянию на каталитическую активность иона металла-катализатора. Взаимосвязь природы индикаторной реакции и природы аналитов, влияющих на ее скорость. Подходы к целенаправленному выбору индикаторных реакций.
- 8. Гибридные методы: экстракционно-кинетический, сорбционно-кинетический. Реакция в растворе в присутствии носителя. Концентрирование и определение металлов на комплексообразующих сорбентах и органических соединений на металлсодержащих сорбентах. Кинетическое детектирование в ТСХ и БХ. Сочетание с мембранными методами разделения.
- 9. Индикаторные реакции на носителях. Особенности реакций на носителях. Изменение оптимальных условий, стабилизация и дестабилизация промежуточных продуктов, появление нового продукта; изменение эффекта аналита, расширение круга определяемых соединений, изменение диапазона определяемых концентраций, повышение селективности определения. Примеры.
- 10. Фотохимические индикаторные реакции, прямые и сенсибилизированные (фотокаталитические) реакции. Механизм действия аналитов. Послеколоночные фотохимические реакции в ВЭЖХ.
- 11. Хемилюминесцентные и фотохемилюминесцентные индикаторные реакции. Окисление люминола и люцигенина. Определение радиоактивности кинетическим методом.
- 12. Индикаторные реакции в присутствии ПАВ. Причины влияния ПАВ на скорость реакций. Примеры использования ПАВ в кинетических методах. Мицеллярный катализ.
- 13. Кинетические методы в проточных системах. Проточно-инжекционный и непрерывный проточный анализ. Преимущества проведения кинетических определений в проточных системах. Послеколоночное детектирование в ВЭЖХ.
- 14. Ферменты как биологические катализаторы. Классификация ферментов. Важнейшие сведения о структуре ферментов. Апоферменты, кофакторы, коферменты, простетические группы.
- 15. Источники ферментов, их выделение и очистка. Субстратная специфичность ферментов. Фермент-субстратные комплексы. Активные центры. Механизмы ферментативного катализа. Уравнение Михаэлиса-Ментен.
- 16. Факторы, влияющие на чувствительность и избирательность определения субстратов ферментов и их эффекторов. Примеры.
- 17. Понятия об апоферментах, кофакторах, коферментах, простетических группах ферментов.
- 18. Иммобилизованные ферменты и их применение в химическом анализе. Физические и химические методы иммобилизации.
- 19. Биосенсоры. Ферментные электроды. Ферментативные тест-методы.
- 20. Преимущества и ограничения применения иммобилизованных ферментов в анализе.

- 21. Сущность иммунных методов анализа. Используемые метки. Области применения.
- 22. Понятия об антигене и антителе. Иммунный комплекс. Специфичность взаимодействия антител с антигенами в иммунохимических методах.
- 23. Получение антител. Их функции в иммунном анализе.
- 24. Иммунный анализ с разделением и без разделения компонентов (гетерогенный и гомогенный иммуноанализ). Метрологические характеристики иммунных методов анализа. Области применения.
- 25. Метки в иммунном анализе. Иммуноферментный анализ. Ферменты, используемые в иммуноферментном методе анализа.
- 26. Суть и различия гетерогенного и гомогенного иммуноанализа. Метрологические характеристики иммунных методов анализа.
- 27. Сущность иммунохроматографических методов и их применение в химическом анализе.
- 28. Сущность биологических методов анализа. Аналитические сигналы в биологических методах, способы их регистрации.
- 29. Индикаторный организм в биологических методах; его функции. Типы индикаторных организмов. 30. Достоинства и недостатки биологических методов анализа. Области их применения.

Методические материалы для проведения процедур оценивания результатов обучения

Шкала оценивания знаний, умений и навыков является единой для всех дисциплин (приведена в таблице ниже)

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю)							
Оценка	Оценка 2 3		4	5			
Результат							
Знания	Отсутствие	Фрагментарные знания	Общие, но не структурированные	Сформированные систематиче-			
	знаний		знания	ские знания			
Умения	ия Отсутствие В целом успешное, но не		В целом успешное, но содержащее	Успешное и систематическое уме-			
	умений систематическое умение		отдельные пробелы умение (до-	ние			
			пускает неточности непринципи-				
		ального характера)					
Навыки (владе-	Навыки (владе- Отсутствие на- Наличие отдельных навы-		В целом, сформированные навыки,	Сформированные навыки, приме-			
ния)	ния) выков ков		но не в активной форме	няемые при решении задач			

РЕЗУЛЬТАТ ОБУЧЕНИЯ	ФОРМА ОЦЕНИВАНИЯ		
по дисциплине (модулю)			
Уметь применять основные закономерности кинетических и биохимических методов анализа	мероприятия текущего контроля ус-		
при решении задач профессиональной деятельности.	певаемости, устный опрос на экзаме-		
Уметь: обосновывать выбор кинетических и биохимических методов анализа в зависимости от	не		

природы аналитов и характера сопутствующих веществ, а также условий эксперимента.	
Уметь: сопоставлять возможности и области применения различных кинетических и	
биохимических методов.	
Уметь: анализировать научную литературу с целью выбора методов разделения и	
концентрирования для решения конкретных аналитических задач.	
Владеть: формами и методами научного познания применительно к кинетическим и биохимиче-	мероприятия текущего контроля ус-
ским методам анализа.	певаемости, устный опрос на экзаме-
Владеть основными химическими теориями, концепциями, законами, описывающими принципы	не
кинетического и биохимического анализа и применять основные законы химии при обсуждении	
полученных результатов, в том числе с привлечением информационных баз данных.	
Владеть: навыками планирования и осуществления химического анализа с использованием ки-	
нетических и биохимических методов.	
Владеть: навыками интерпретации и обсуждения результатов проведенного исследования, ос-	
новываясь на современной литературе по теории и практике кинетических и биохимических ме-	
тодов.	
	1