Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный университет имени М.В. Ломоносова» Химический факультет

УТВЕРЖДАЮ

И.о. декана химического факультета, Чл.-корр. РАН, профессор

/С.Н. Калмыков/

«30» августа 2019 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Физические методы исследования биомолекул и нанообъектов

Уровень высшего образования:

Магистратура

Направление подготовки (специальность):

04.04.01 Химия

Направленность (профиль) ОПОП:

Биотехнология и нанобиотехнологии

Форма обучения:

очная

Рабочая программа рассмотрена и одобрена Учебно-методической комиссией факультета (протокол №3 от 13.05.2019)

Рабочая программа дисциплины (модуля) разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки 04.04.01 «Химия» (программа магистратуры) в редакции приказа МГУ от 30 августа 2019 г., №1033.

Год (годы) приема на обучение 2019/2020, 2020/2021

- 1. Место дисциплины (модуля) в структуре ООП: вариативная часть ООП, блок ПД.
- 2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников). Соответствие результатов обучения по данному элементу ОПОП результатам освоения ОПОП (в форме компетенция индикатор ЗУВ) указано в Общей характеристике ОПОП.

Компетенция	Индикатор достижения	Планируемые результаты обучения по дисципли-		
		не (модулю)		
СПК-3.М. Способен применять знания об	СПК-3.М.1 использует аппарат фи-	Знать: физико-химические основы методов исследо-		
основных классах нанобиоматериалов и	зичнсекой химии при исследования	вания биомолекул и нанообъектов		
их применении в нанобиотехнологии; об	биомолекул	Знать: актуальные направления исследований в об-		
общих принципах физики наноструктур,		ласти современной нанобиотехнологии биомолекул		
физических методов создания и исследо-		Уметь: анализировать экспериментальные данные и		
вания нанобиоструктур; использует ба-		предлагать комплекс физических методов для анали-		
зовые навыки компьютерного модели-		за биомолекул и нанообъектов		
рования нанобиоструктур				

- 3. Объем дисциплины (модуля) составляет 4 зачетные единицы, всего **108** часа, из которых **46** часов составляет контактная работа студента с преподавателем (**19** часа занятия лекционного типа, **19** часа занятия семинарского типа, **6** часа индивидуальные консультации, **2** часа промежуточный контроль успеваемости), **62** часа составляет самостоятельная работа студента.
- 4. Входные требования для освоения дисциплины (модуля), предварительные условия.

Обучающийся должен

Знать: общие положения, законы и теории базовых химических и математических дисциплин, основы биохимии, основные классы биоорганических соединений.

Уметь: применять сведения в области физической химии к решению упрощенных задач

Владеть: навыками анализа физико-химических параметров системы для предсказания возможных протекающих процессов, методами анализа экспериментальных данных.

5. Содержание дисциплины (модуля), структурированное по темам.

Наименование и краткое содер-	Bcero	В том числе		
жание разделов и тем дисцип- лины (модуля),	(часы)	Контактная работа (работа во взаимодействии с преподавателем), часы	Самостоятельная рабо- та обучающегося, часы	
форма промежуточной аттеста-		из них	из них	

		Занятия лекционного типа	Занятия семинарского типа	Групповые консульта- ции	Индивидуальные кон- сультации	Учебные занятия, направленные на проведение текущего контроля успеваемости, промежуточной аттестации	Bcero	Выполнение домашних заданий	Подготовка рефератов и т.п	Bcero
Тема 1. ИК-спекроскопия и спектроскопия КД	15	3	3		1		7			8
Тема 2. ЯМР биомолекул	15	3	3		1		7			8
Тема 3. Методы характеризации размеров нанообъектов в растворе	15	3	3		1	(*)	7			8
Тема 4. АСМ и СЗМ	15	3	3		1		7			8
Тема 5. Электронная микроскопия	15	3	3		1		7			8
Тема 6. Флуоресцентная микро- скопия	17	4	4		1	(*)	9			8
Промежуточная аттестация <u>зачет</u>	16					2	2			14
Итого	108	19	19		6	2	46			62

6. Образовательные технологии:

- -применение компьютерных симуляторов, обработка данных на компьютерах, использование компьютерных программ, управляющих приборами;
- -использование средств дистанционного сопровождения учебного процесса;
- -преподавание дисциплин в форме авторских курсов по программам, составленным на основе результатов исследований научных

школ МГУ.

- 7. **Учебно-методические материалы для самостоятельной работы по дисциплине** (модулю): конспекты лекций, литература из рекомендованного списка
- 8. Ресурсное обеспечение:
 - Перечень основной и вспомогательной учебной литературы ко всему курсу

Со всех компьютеров МГУ организован доступ к полным текстам научных журналов и книг на русском и иностранных языках. Доступ открыт по IP-адресам, логин и пароль не требуются: http://nbmgu.ru/

Основная литература

1. Конспекты лекций

Дополнительная литература

- 1. Научные статьи и обзоры, предоставленные лекторами
- Материально-техническое обеспечение: специальных требований нет, занятия проводятся в обычной аудитории, оснащенной доской и мелом (маркерами)
- 9. Язык преподавания русский
- 10. Преподаватели: доц. д.х.н. Кудряшова Е.В., доц. к.х.н. Громова Е.С., проф. д.х.н. Польшаков В.И., м.н.с. Евтушенко Е.Г., с.н.с.к.б.н. Голышев С.А., проф. д.х.н. Савицкий А.П.

Фонды оценочных средств, необходимые для оценки результатов обучения

Образцы оценочных средств для текущего контроля усвоения материала и промежуточной аттестации - экзамен. На экзамене проверяется достижение результатов обучения, перечисленных в п.2.

Вопросы к зачету:

1) Что такое эллиптичность? Какую информацию получают из анализа спектров КД в дальней УФ области? Ответ обоснуйте. Как осуществляется анализ КД спектров? Какие характеристические полосы в дальней КД области используют для анализа структуры белков?

- 2) Какой аналитический сигнал измеряется в ИК спектроскопии? Чем определяется частота валентных колебаний функциональных групп биомолекул? Какую информацию о структуре белка можно извлечь из анализа ИК спектров. Какую область в ИК спектре рассма ривают для анализа структуры белков, как она называется и чему она соответствует?
- 3) ИК спектроскопия: что такое частота колебаний и что такое волновое число? Как они соотносятся между собой? Какова размерность этих двух величин? Почему несмотря на разнообразие аминокислот и функциональных групп в белках, ИК спектры белков не представляют собой «частокол» всевозможных пиков, а имею только несколько характеристических полос поглощения. Чему они соответствуют? Как проявляются различия в ИК спектрах различных белков и в какой области?
- 4) Какую информацию несут спектры КД белков в области поглощения ароматических аминокислот? Ответ поясните.
- 5) Основные принципы и подходы к изучению олигонуклеотидов и олигорибонуклеотидов методами спектроскопии ЯМР. Ключевые параметры, используемые для отнесения сигналов фрагментов ДНК и РНК и расчета их структуры в растворе.
- 6) Каковы основные параметры ЯМР, используемые для расчета структуры белков и из каких этапов состоит процедура установления структуры белка?
- 7) Каковы основные требования к белку для возможности получения структурной информации о нем методом ЯМР? Требования к изотопному мечению белка в зависимости от его размера. Каковы основные критерии качества структур биомолекул в растворе, полученных методом ЯМР?
- 8) Основные подходы к получению белков, меченных стабильными изотопами (13С, 15N 2D) для их исследования методом ЯМР. Биосинтез белка в минимальной среде, биосинтез в бесклеточной системе.
- 9) Каковы основные методы ЯМР для изучения динамических свойств биомолекул в шкале времени от пикосекунд до часов?
- 10) Каковы основные методы отнесения сигналов белка в отсутствии изотопного мечения, для белков, обогащенных изотопом 15N, и для белков, меченых изотопами 13C и 15N.
- 11) Принцип работы просвечивающего (трансмиссионного) электронного микроскопа, предельное разрешение ПЭМ, базовый принцип генерации контраста по массе-плотности. Какую информацию об объекте позволяет получать этот инструмент?
- 12). Взаимодействие электронного луча с веществом. Возникающие при этом вторичные излучения. Свободный пробег электронов в веществе. Объем взаимодействия электронного луча (electron beam interaction volume) с массивным образцом форма и зоны.
- 13) Требования к образцу для исследования в просвечивающем (трансмиссионном) электронном микроскопе. Подготовка «неудобных» биологических образцов (клеток и образцов тканей) для исследования в просвечивающем (трансмиссионном) электронном микроскопе.
- 14) Сканирующий электронный микроскоп. Принцип работы и область применения. Вторичные и обратно-рассеянные электроны, их природа и свойства, их детектирование, информация об образце, которую они несут.
- 15) Требования к образцам для исследования в СЭМ и подготовка «мягкого» (клеток, образцов тканей, микро- (и не очень) организмов) биологического материала для такого исследования.
- 16) Сканирующий электронный микроскоп со сфокусированным ионным лучом (FIB-SEM): возможности и области применения.
- 17) Принципы конфокальной микроскопии и двухфотонной (многофотонной) микроскопии. Сходство и различие.
- 18) Детекция одиночных молекул, флуоресцентная корреляционная микроскопия. Принцип метода. Информация, которая может быть получена этим методом.

- 19) Переход микроскопия- наноскопия. Функция распределения точечного источника света, поинтиллизм. Методы PALM/STORM.
- 20) Пределы разрешения для различных методов субдифракционной микроскопии.

Методические материалы для проведения процедур оценивания результатов обучения

Шкала оценивания знаний, умений и навыков является единой для всех дисциплин (приведена в таблице ниже)

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю)						
Оценка	2	3	4	5		
Результат						
Знания	Отсутствие	Фрагментарные знания	Общие, но не структурированные	Сформированные систематиче-		
	знаний		знания	ские знания		
Умения	Отсутствие	В целом успешное, но не	В целом успешное, но содержащее	Успешное и систематическое уме-		
	умений	систематическое умение	отдельные пробелы умение (до-	ние		
			пускает неточности непринципи-			
			ального характера)			
Навыки (владе-	Отсутствие на-	Наличие отдельных навы-	В целом, сформированные навыки,	Сформированные навыки, приме-		
ния)	выков	КОВ	но не в активной форме	няемые при решении задач		

РЕЗУЛЬТАТ ОБУЧЕНИЯ	ФОРМА ОЦЕНИВАНИЯ
по дисциплине (модулю)	
Знать: актуальные направления исследований в области современной нанобиотехнологии	мероприятия текущего контроля успе-
биомолекул	ваемости, устный опрос на экзамене
Знать: физико-химические основы методов исследования биомолекул и нанообъектов	
Уметь: анализировать экспериментальные данные и предлагать комплекс физических мето-	мероприятия текущего контроля успе-
дов для анализа биомолекул и нанообъектов	ваемости, устный опрос на экзамене